![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專題模擬卷第七章 立體幾何與空間向量(解析卷)_第1頁(yè)](http://file4.renrendoc.com/view12/M09/00/0A/wKhkGWa-miiAQKqoAAGZXFfysNc507.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專題模擬卷第七章 立體幾何與空間向量(解析卷)_第2頁(yè)](http://file4.renrendoc.com/view12/M09/00/0A/wKhkGWa-miiAQKqoAAGZXFfysNc5072.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專題模擬卷第七章 立體幾何與空間向量(解析卷)_第3頁(yè)](http://file4.renrendoc.com/view12/M09/00/0A/wKhkGWa-miiAQKqoAAGZXFfysNc5073.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專題模擬卷第七章 立體幾何與空間向量(解析卷)_第4頁(yè)](http://file4.renrendoc.com/view12/M09/00/0A/wKhkGWa-miiAQKqoAAGZXFfysNc5074.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)章節(jié)專題模擬卷第七章 立體幾何與空間向量(解析卷)_第5頁(yè)](http://file4.renrendoc.com/view12/M09/00/0A/wKhkGWa-miiAQKqoAAGZXFfysNc5075.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
立體幾何與空間向量本試卷22小題,滿分150分。考試用時(shí)120分鐘一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.(2023·吉林·統(tǒng)考三模)已知直線SKIPIF1<0與平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,能使SKIPIF1<0的充分條件是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【答案】C【詳解】對(duì)于A,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0可能平行,可能相交,但不一定垂直,A錯(cuò)誤;對(duì)于B,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,B錯(cuò)誤;對(duì)于C,SKIPIF1<0,SKIPIF1<0,根據(jù)面面垂直判定定理可知SKIPIF1<0,C正確;對(duì)于D,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,但SKIPIF1<0相交但不一定垂直,如圖示:故D錯(cuò)誤;故選:C2.(2023·湖南長(zhǎng)沙·統(tǒng)考一模)在平行六面體ABCD?A1B1C1D1中,已知AB=4,AD=3,AAA.10.5 B.12.5C.22.5 D.42.5【答案】A【分析】將AB,AD,【詳解】由題意得AC=AB+因?yàn)锳B=4,AD=3,AA1=5所以AC=10.5,故選:A3.(2023·江蘇·統(tǒng)考三模)已知底面半徑為r的圓錐SO,其軸截面是正三角形,它的一個(gè)內(nèi)接圓柱的底面半徑為SKIPIF1<0,則此圓柱與圓錐的側(cè)面積的比值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】圓錐的高為SKIPIF1<0,如圖,由SKIPIF1<0可得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,圓柱側(cè)面積SKIPIF1<0,圓錐側(cè)面積SKIPIF1<0,SKIPIF1<0.故選:D.4.(2023天津聯(lián)考三模)小明同學(xué)參加綜合實(shí)踐活動(dòng),設(shè)計(jì)了一個(gè)封閉的包裝盒,包裝盒如圖所示:底面是邊長(zhǎng)為(單位:)的正方形,,,,均為正三角形,且它們所在的平面都與平面垂直,則該包裝盒的容積是()ASKIPIF1<0BSKIPIF1<0CSKIPIF1<0DSKIPIF1<0
【答案】A
【解析】過(guò)點(diǎn)作于點(diǎn),過(guò)點(diǎn)作于點(diǎn),連接.
過(guò)點(diǎn),分別作,,交,于點(diǎn),,
連接,,,,
,分別為,的中點(diǎn),為長(zhǎng)方體,故該包裝盒可分成一個(gè)長(zhǎng)方體和四個(gè)相等的四棱錐組合而成.
由底面是邊長(zhǎng)為的正方形可得:,∴所求該包裝盒的容積為
.5.(2023·山西晉中·統(tǒng)考三模)已知點(diǎn)P在棱長(zhǎng)為2的正方體SKIPIF1<0的表面上運(yùn)動(dòng),則SKIPIF1<0的最大值為(
)A.6 B.7 C.8 D.9【答案】C【詳解】取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,如圖,則SKIPIF1<0,當(dāng)SKIPIF1<0在正方體表面上運(yùn)動(dòng)時(shí),運(yùn)動(dòng)到SKIPIF1<0或SKIPIF1<0處時(shí),SKIPIF1<0最大,所以SKIPIF1<0,所以SKIPIF1<0的最大值為8.故選:C6.(2023·浙江溫州·統(tǒng)考三模)四面體SKIPIF1<0滿足SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0的重心,則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】四面體SKIPIF1<0滿足SKIPIF1<0,即SKIPIF1<0兩兩垂直,以點(diǎn)O為原點(diǎn),以射線SKIPIF1<0的正方向分別為SKIPIF1<0軸的正方向建立空間直角坐標(biāo)系,如圖,因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,于是SKIPIF1<0,SKIPIF1<0,所以點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0.故選:A7.(2023·山東菏澤·統(tǒng)考一模)如圖,八面體的每一個(gè)面都是正三角形,并且A,B,C,D四個(gè)頂點(diǎn)在同一平面內(nèi),下列結(jié)論:①AE//平面CDF;②平面ABE//平面CDF;③AB⊥AD;④平面ACE⊥平面BDF,正確命題的個(gè)數(shù)為(
)A.1 B.2 C.3 D.4【答案】D【分析】根據(jù)題意,以正八面體的中心O為原點(diǎn),OB,OC,OE分別為x,y,z軸,建立如圖所示空間直角坐標(biāo)系,由空間向量的坐標(biāo)運(yùn)算以及法向量,對(duì)選項(xiàng)逐一判斷,即可得到結(jié)果.【詳解】以正八面體的中心O為原點(diǎn),OB,OC,OE分別為x,y,z軸,建立如圖所示空間直角坐標(biāo)系,設(shè)正八面體的邊長(zhǎng)為2,則A所以,AE=設(shè)面CDF的法向量為n=x,y,z,則CD?n=?2又AE?n=?2+2=0,所以AE⊥n,AE?因?yàn)锳E=?CF,所以AE//又AB//CD,AB?面CDF,CD?面CDF,則AB//面CDF,由AB∩AE=A,AE,AB?平面ABE,所以平面AEB//平面CDF,②正確;因?yàn)锽2,0,0,AB=易知平面ACE的一個(gè)法向量為n1=1,0,0,平面BDF因?yàn)閚1?n2=0故選:D8.(2023·吉林·統(tǒng)考三模)如圖,菱形紙片SKIPIF1<0中,SKIPIF1<0,O為菱形SKIPIF1<0的中心,將紙片沿對(duì)角線SKIPIF1<0折起,使得二面角SKIPIF1<0為SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),則折紙后SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.0【答案】A【詳解】如圖,連接SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0即為二面角SKIPIF1<0得平面角,即SKIPIF1<0,設(shè)SKIPIF1<0的中點(diǎn)為M,連接SKIPIF1<0,則SKIPIF1<0,設(shè)菱形紙片SKIPIF1<0中的邊長(zhǎng)為2,因?yàn)镾KIPIF1<0,則SKIPIF1<0為正三角形,則SKIPIF1<0,故SKIPIF1<0為正三角形,故SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0,又因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,故在SKIPIF1<0中,SKIPIF1<0,故SKIPIF1<0,故選:A二、多項(xiàng)選擇題:本題共4小題,每小題5分,共20分。在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求。全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分。9.(2023·黑龍江牡丹江·牡丹江市第三高級(jí)中學(xué)??既#┮阎猄KIPIF1<0、SKIPIF1<0、SKIPIF1<0為空間中三條不同的直線,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為空間中三個(gè)不同的平面,則下列說(shuō)法中正確的有(
)A.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別與SKIPIF1<0、SKIPIF1<0所成的角相等,則SKIPIF1<0D.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0【答案】BD【詳解】對(duì)于A,如圖1,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0可以與SKIPIF1<0平行,故A錯(cuò)誤;對(duì)于B,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,B對(duì);對(duì)于C,如圖2,若SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別與SKIPIF1<0、SKIPIF1<0所成的角為SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0可以相交、平行或異面,故C錯(cuò)誤;對(duì)于D,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,D對(duì).故選:BC.10.(2023·昆明模擬)已知P,Q分別是正方體ABCD-A1B1C1D1的棱BB1,CC1上的動(dòng)點(diǎn)(不與頂點(diǎn)重合),則下列結(jié)論錯(cuò)誤的是()A.AB⊥PQB.平面BPQ∥平面ADD1A1C.四面體ABPQ的體積為定值D.AP∥平面CDD1C1【答案】C【解析】對(duì)于A,∵AB⊥BC,AB⊥BB1,BC∩BB1=B,BC,BB1?平面BCC1B1,∴AB⊥平面BCC1B1,∵PQ?平面BCC1B1,∴AB⊥PQ,故A正確;對(duì)于B,∵平面ADD1A1∥平面BCC1B1,平面BPQ與平面BCC1B1重合,∴平面BPQ∥平面ADD1A1,故B正確;對(duì)于C,∵A到平面BPQ的距離AB為定值,Q到BP的距離為定值,BP的長(zhǎng)不是定值,∴四面體ABPQ的體積不為定值,故C錯(cuò)誤;對(duì)于D,∵平面ABB1A1∥平面CDD1C1,AP?平面ABB1A1,∴AP∥平面CDD1C1,故D正確.11.(多選)(2023·安徽黃山·統(tǒng)考三模)在棱長(zhǎng)為SKIPIF1<0的正四面體SKIPIF1<0中,過(guò)點(diǎn)SKIPIF1<0且與SKIPIF1<0平行的平面SKIPIF1<0分別與棱SKIPIF1<0交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0為線段SKIPIF1<0上的動(dòng)點(diǎn),則下列結(jié)論正確的是(
)A.SKIPIF1<0B.當(dāng)SKIPIF1<0分別為線段SKIPIF1<0中點(diǎn)時(shí),SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0C.線段SKIPIF1<0的最小值為SKIPIF1<0D.空間四邊形SKIPIF1<0的周長(zhǎng)的最小值為SKIPIF1<0【答案】ABD【詳解】由題知,SKIPIF1<0//平面SKIPIF1<0,而平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,根據(jù)線面平行的性質(zhì)定理可知,SKIPIF1<0//SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,A選項(xiàng)正確;連接SKIPIF1<0,易得SKIPIF1<0,又SKIPIF1<0,于是SKIPIF1<0(三線合一),故SKIPIF1<0,取SKIPIF1<0中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,由中位線可知SKIPIF1<0,在SKIPIF1<0中由余弦定理,SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0//SKIPIF1<0,SKIPIF1<0與SKIPIF1<0所成角即為SKIPIF1<0(或其補(bǔ)角),在SKIPIF1<0中根據(jù)余弦定理,SKIPIF1<0,B選項(xiàng)正確;根據(jù)B選項(xiàng)分析,當(dāng)SKIPIF1<0分別為線段SKIPIF1<0中點(diǎn)時(shí),SKIPIF1<0,C選項(xiàng)錯(cuò)誤;由SKIPIF1<0//SKIPIF1<0,由于SKIPIF1<0為正三角形,則SKIPIF1<0也是正三角形,故SKIPIF1<0,故四邊形SKIPIF1<0的周長(zhǎng)為:SKIPIF1<0,當(dāng)SKIPIF1<0為SKIPIF1<0中點(diǎn),即SKIPIF1<0時(shí),SKIPIF1<0有最小值SKIPIF1<0.即空間四邊形SKIPIF1<0的周長(zhǎng)的最小值為SKIPIF1<0,D選項(xiàng)正確.故選:ABD12.(多選)(2023·黑龍江大慶·統(tǒng)考三模)勒洛四面體是一個(gè)非常神奇的“四面體”,它能在兩個(gè)平行平面間自由轉(zhuǎn)動(dòng),并且始終保持與兩平面都接觸.勒洛四面體是以正四面體的四個(gè)頂點(diǎn)為球心,以正四面體的棱長(zhǎng)為半徑的四個(gè)球的相交部分圍成的幾何體,若用棱長(zhǎng)為4的正四面體SKIPIF1<0作勒洛四面體,如圖,則下列說(shuō)法正確的是(
)A.平面SKIPIF1<0截勒洛四面體所得截面的面積為SKIPIF1<0B.記勒洛四面體上以C,D為球心的兩球球面交線為弧SKIPIF1<0,則其長(zhǎng)度為SKIPIF1<0C.該勒洛四面體表面上任意兩點(diǎn)間距離的最大值為4D.該勒洛四面體能夠容納的最大球的半徑為SKIPIF1<0【答案】AD【詳解】對(duì)于A,平面SKIPIF1<0截勒洛四面體所得截面如圖甲,它的面積為三個(gè)半徑為4,圓心角為SKIPIF1<0的扇形的面積減去兩個(gè)邊長(zhǎng)為4的正三角形的面積;即SKIPIF1<0,故A正確;對(duì)于B,如圖乙,取SKIPIF1<0中點(diǎn)SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,記該勒洛四面體上以SKIPIF1<0,SKIPIF1<0為球心的兩球交線為弧SKIPIF1<0,則該弧是以SKIPIF1<0的中點(diǎn)SKIPIF1<0為圓心,以SKIPIF1<0為半徑的圓弧,設(shè)圓心角為SKIPIF1<0,則SKIPIF1<0,可知SKIPIF1<0,所以弧長(zhǎng)不等于SKIPIF1<0,故B錯(cuò)誤;對(duì)于C,如圖丙,設(shè)弧SKIPIF1<0的中點(diǎn)是SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)是SKIPIF1<0,設(shè)弧SKIPIF1<0的中點(diǎn)是SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)是SKIPIF1<0,則根據(jù)圖形的對(duì)稱性,四點(diǎn)SKIPIF1<0共線且過(guò)正四面體SKIPIF1<0的中心SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即勒洛四面體表面上任意兩點(diǎn)間距離可能大于4,最大值為SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,勒洛四面體能容納的最大球,與勒洛四面體的弧面相切,如圖乙,其中點(diǎn)SKIPIF1<0為該球與勒洛四面體的一個(gè)切點(diǎn),由對(duì)稱性可知SKIPIF1<0為該球的球心,內(nèi)半徑為SKIPIF1<0,連接SKIPIF1<0,易知SKIPIF1<0三點(diǎn)共線,設(shè)正四面體SKIPIF1<0的外接球半徑為SKIPIF1<0,如圖丁,則由題意得:正四面體SKIPIF1<0的高,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,內(nèi)半徑SKIPIF1<0,故D正確.故選:AD.三、填空題:本大題共4小題,每小題5分,共20分。13.(2023·棗莊模擬)在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=AB=2,AD=1,點(diǎn)F,G分別是AB,CC1的中點(diǎn),則△D1GF的面積為________.【答案】eq\f(\r(14),2)【解析】以D為坐標(biāo)原點(diǎn),DA,DC,DD1所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系(圖略),則D1(0,0,2),G(0,2,1),F(xiàn)(1,1,0),eq\o(FD1,\s\up6(→))=(-1,-1,2),eq\o(FG,\s\up6(→))=(-1,1,1),∴點(diǎn)D1到直線GF的距離d=eq\r(|\o(FD1,\s\up11(→))|2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(\o(FD1,\s\up6(→))·\o(FG,\s\up6(→))\o(\s\up7(),\s\do4()),|\o(FG,\s\up6(→))|)))2)=eq\r(6-\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,\r(3))))2)=eq\f(\r(42),3).又|eq\o(FG,\s\up6(→))|=eq\r(3),∴SKIPIF1<0=eq\f(1,2)×eq\r(3)×eq\f(\r(42),3)=eq\f(\r(14),2).14.(2023·廣東·統(tǒng)考模擬預(yù)測(cè))如圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E,F(xiàn)分別為AA1,AB的中點(diǎn),M點(diǎn)是正方形ABB1A1內(nèi)的動(dòng)點(diǎn),若C1M∥平面CD1EF,則M點(diǎn)的軌跡長(zhǎng)度為________.【答案】eq\r(2)【解析】如圖所示,取A1B1的中點(diǎn)H,B1B的中點(diǎn)G,連接GH,C1H,C1G,EG,HF,可得四邊形EGC1D1是平行四邊形,所以C1G∥D1E,又C1G?平面CD1EF,D1E?平面CD1EF,所以C1G∥平面CD1EF.同理可得C1H∥CF,C1H∥平面CD1EF.因?yàn)镃1H∩C1G=C1,所以平面C1GH∥平面CD1EF.由M點(diǎn)是正方形ABB1A1內(nèi)的動(dòng)點(diǎn)可知,若C1M∥平面CD1EF,則點(diǎn)M在線段GH上,所以M點(diǎn)的軌跡長(zhǎng)度GH=eq\r(12+12)=eq\r(2).15.(2023·北京模擬)如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,點(diǎn)O為底面ABCD的中心,點(diǎn)P在側(cè)面BB1C1C的邊界及其內(nèi)部運(yùn)動(dòng).給出下列四個(gè)結(jié)論:①D1O⊥AC;②存在一點(diǎn)P,D1O∥B1P;③若D1O⊥OP,則△D1C1P面積的最大值為eq\r(5);④若P到直線D1C1的距離與到點(diǎn)B的距離相等,則P的軌跡為拋物線的一部分.其中所有正確結(jié)論的序號(hào)是________.【答案】①③【解析】對(duì)于①,連接AD1,CD1,如圖,由正方體的性質(zhì)知△ACD1為等邊三角形,由于O為底面ABCD的中心,故O為AC的中點(diǎn),故AC⊥D1O,①正確;對(duì)于②,將D1O進(jìn)行平移到過(guò)B1點(diǎn),使之與B1P具有公共頂點(diǎn),如圖,根據(jù)立體圖形判斷,無(wú)論如何也不可能滿足B1H平行或重合于B1P,所以D1O不可能平行于B1P,②錯(cuò)誤;對(duì)于③,取B1B的中點(diǎn)E,連接OE,EC,BD,D1E,如圖,易證明D1O⊥平面OEC,所以P在線段EC上運(yùn)動(dòng),當(dāng)點(diǎn)P到點(diǎn)E位置時(shí),C1P最大,此時(shí)△D1C1P的面積最大為SKIPIF1<0=eq\f(1,2)×2×eq\r(5)=eq\r(5),所以③正確;對(duì)于④,P到直線D1C1的距離為線段PC1的長(zhǎng)度,所以|PC1|=|PB|,判定出P點(diǎn)在直線BC1的垂直平分線上,故④錯(cuò)誤.16.(2023·安徽·校聯(lián)考三模)已知四面體SKIPIF1<0的四個(gè)頂點(diǎn)都在球SKIPIF1<0的球面上,SKIPIF1<0是邊長(zhǎng)為2的等邊三角形,SKIPIF1<0外接圓的圓心為SKIPIF1<0.若四面體SKIPIF1<0的體積最大時(shí),SKIPIF1<0,則球SKIPIF1<0的半徑為______;若SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),且SKIPIF1<0,則球SKIPIF1<0的表面積為______.【答案】SKIPIF1<0SKIPIF1<0【詳解】設(shè)SKIPIF1<0的外接圓的半徑R,由題可得SKIPIF1<0,解得SKIPIF1<0;若四面體SKIPIF1<0的體積最大時(shí),則點(diǎn)B在過(guò)SKIPIF1<0和SKIPIF1<0的直徑上,且SKIPIF1<0在SKIPIF1<0的兩側(cè),在SKIPIF1<0中,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,設(shè)球SKIPIF1<0的半徑為SKIPIF1<0,則在SKIPIF1<0中,SKIPIF1<0,解得SKIPIF1<0;如圖,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0并延長(zhǎng)SKIPIF1<0交圓SKIPIF1<0于點(diǎn)SKIPIF1<0.連接SKIPIF1<0,由SKIPIF1<0得,則SKIPIF1<0.SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,所以在SKIPIF1<0中,由余弦定理得SKIPIF1<0,可得SKIPIF1<0,結(jié)合圖形可得SKIPIF1<0圓SKIPIF1<0.連接SKIPIF1<0,過(guò)點(diǎn)O作BF的垂線,垂足為點(diǎn)G,連接BO,四面體SKIPIF1<0外接球的半徑SKIPIF1<0解得SKIPIF1<0,所以球O的半徑SKIPIF1<0,四面體ABCD外接球的表面積為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.四、解答題:本大題共6小題,共70分,請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(2023福建莆田一中校考期末)如圖,四邊形SKIPIF1<0為矩形,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0為SKIPIF1<0上的中點(diǎn),證明SKIPIF1<0平面SKIPIF1<0.【分析】(1)連接SKIPIF1<0,矩形SKIPIF1<0中可證出SKIPIF1<0,由SKIPIF1<0平面SKIPIF1<0證出SKIPIF1<0,從而得到SKIPIF1<0平面SKIPIF1<0,所以有SKIPIF1<0;(2)取SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0.利用矩形SKIPIF1<0和三角形中位線定理,證出四邊形SKIPIF1<0是平行四邊形,從而證出SKIPIF1<0,結(jié)合線面平行判定定理,可得SKIPIF1<0平面SKIPIF1<0.【詳解】(1)證明:連接SKIPIF1<0,∵SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0∴SKIPIF1<0為等腰直角三角形,由此可得SKIPIF1<0,同理SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0.(2)證明:取SKIPIF1<0、SKIPIF1<0的中點(diǎn)SKIPIF1<0、SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0.∵SKIPIF1<0、SKIPIF1<0是SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0中,可得SKIPIF1<0且SKIPIF1<0,又∵SKIPIF1<0是SKIPIF1<0的中點(diǎn),且四邊形SKIPIF1<0為矩形,∴SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0、SKIPIF1<0平行且相等,可得四邊形SKIPIF1<0是平行四邊形.∴SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0.18.(2023·山西晉中·統(tǒng)考三模)如圖,在四棱錐P-ABCD中,底面ABCD為矩形,E是CD的中點(diǎn),AE與BD交于點(diǎn)F,G是SKIPIF1<0的重心.(1)求證:SKIPIF1<0平面PCD;(2)若平面PAD⊥平面ABCD,SKIPIF1<0為等腰直角三角形,且SKIPIF1<0,求直線AG與平面PBD所成角的正弦值.【答案】(1)證明見解析(2)SKIPIF1<0.【詳解】(1)證明:連接AG并延長(zhǎng)交PD于H,∵G為SKIPIF1<0的重心,∴SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0平面PCD,SKIPIF1<0平面PCD,∴SKIPIF1<0平面PCD.(2)連接PG并延長(zhǎng)交AD于O,顯然O為AD的中點(diǎn),因?yàn)槠矫鍼AD⊥平面ABCD,平面SKIPIF1<0平面SKIPIF1<0,又PO⊥AD,∴PO⊥平面ABCD.取BC中點(diǎn)M,以O(shè)為坐標(biāo)原點(diǎn),OA,OM,OP分別為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系,則PO=2,于是,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)平面PBD的法向量為SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,不妨取z=1,則SKIPIF1<0,∴SKIPIF1<0,∴AG與平面PBD所成角的正弦值為SKIPIF1<0.19.(2023·北京模擬)如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,AB=AC=AA1=1,M為線段A1C1上一點(diǎn).(1)求證:BM⊥AB1;(2)若直線AB1與平面BCM所成的角為eq\f(π,4),求點(diǎn)A1到平面BCM的距離.【解析】(1)證明∵AA1⊥平面ABC,AB,AC?平面ABC,∴AA1⊥AB,AA1⊥AC,而AB⊥AC,故建立如圖所示的空間直角坐標(biāo)系,設(shè)A1M=a,a∈[0,1],則A(0,0,0),A1(0,0,1),B(1,0,0),C(0,1,0),B1(1,0,1),M(0,a,1),eq\o(BM,\s\up6(→))=(-1,a,1),eq\o(AB1,\s\up6(→))=(1,0,1),∵eq\o(BM,\s\up6(→))·eq\o(AB1,\s\up6(→))=0,∴eq\o(BM,\s\up6(→))⊥eq\o(AB1,\s\up6(→)),∴BM⊥AB1.(2)解設(shè)平面BCM的法向量n=(x,y,z),由(1)知eq\o(BM,\s\up6(→))=(-1,a,1),eq\o(BC,\s\up6(→))=(-1,1,0),eq\o(AB1,\s\up6(→))=(1,0,1),∴eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(BM,\s\up6(→))=-x+ay+z=0,,n·\o(BC,\s\up6(→))=-x+y=0,))取x=1,得n=(1,1,1-a),∵直線AB1與平面BCM所成的角為eq\f(π,4),∴sin
eq\f(π,4)=eq\f(|\o(AB1,\s\up6(→))·n|,|\o(AB1,\s\up6(→))||n|)=eq\f(|2-a|,\r(2)·\r(2+1-a2))=eq\f(\r(2),2),解得a=eq\f(1,2),∴n=eq\b\lc\(\rc\)(\a\vs4\al\co1(1,1,\f(1,2))),∵eq\o(A1B,\s\up6(→))=(1,0,-1),∴點(diǎn)A1到平面BCM的距離d=eq\f(|\o(A1B,\s\up6(→))·n|,|n|)=eq\f(\f(1,2),\r(\f(9,4)))=eq\f(1,3).20.(2023·遼寧沈陽(yáng)·沈陽(yáng)二中??既#┤鐖D,在四棱錐SKIPIF1<0中,SKIPIF1<0面ABCD,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.E為PD的中點(diǎn),點(diǎn)F在PC上,且SKIPIF1<0.(1)求證:SKIPIF1<0面PAD;(2)求二面角SKIPIF1<0的正弦值;(3)設(shè)點(diǎn)G在PB上,且SKIPIF1<0.判斷是否存在這樣的SKIPIF1<0,使得A,E,F(xiàn),G四點(diǎn)共面.【答案】(1)證明見解析(2)SKIPIF1<0(3)存在【詳解】(1)∵SKIPIF1<0平面ABCD,SKIPIF1<0平面ABCD,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面PAD,SKIPIF1<0平面PAD,∴SKIPIF1<0平面PAD.(2)以A為原點(diǎn),在平面ABCD內(nèi)過(guò)A作CD的平行線為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,平面AEP的一個(gè)法向量為SKIPIF1<0,設(shè)平面AEF的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0,設(shè)二面角SKIPIF1<0的平面角為SKIPIF1<0,由圖可知SKIPIF1<0為銳角,則SKIPIF1<0.∴二面角SKIPIF1<0的余弦值為SKIPIF1<0.故二面角SKIPIF1<0的正弦值為SKIPIF1<0.(3)存在這樣的SKIPIF1<0.由SKIPIF1<0可得:SKIPIF1<0,則SKIPIF1<0,若A,E,F(xiàn),G四點(diǎn)共面,則SKIPIF1<0在面SKIPIF1<0內(nèi),又面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0.∴存在這樣的SKIPIF1<0,使得四點(diǎn)共面.21.(2023·青島模擬)如圖①,在梯形ABCD中,AB∥DC,AD=BC=CD=2,AB=4,E為AB的中點(diǎn),以DE為折痕把△ADE折起,連接AB,AC,得到如圖②的幾何體,在圖②的幾何體中解答下列問(wèn)題.(1)證明:AC⊥DE;(2)請(qǐng)從以下兩個(gè)條件中選擇一個(gè)作為已知條件,求平面DAE與平面AEC夾角的余弦值.①四棱錐A-BCDE的體積為2;②直線AC與EB所成角的余弦值為eq\f(\r(6),4).【解析】(1)證明在圖①中,連接CE(圖略),因?yàn)镈C∥AB,CD=eq\f(1,2)AB,E為AB的中點(diǎn),所以DC∥AE,且DC=AE,所以四邊形ADCE為平行四邊形,所以AD=CE=CD=AE=2,同理可證DE=2,在圖②中,取DE的中點(diǎn)O,連接OA,OC(圖略),則OA=OC=eq\r(3),因?yàn)锳D=AE=CE=CD,所以DE⊥OA,DE⊥OC,因?yàn)镺A∩OC=O,OA,OC?平面AOC,所以DE⊥平面AOC,因?yàn)锳C?平面AOC,所以DE⊥AC.(2)解若選擇①:由(1)知DE⊥平面AOC,DE?平面BCDE,所以平面AOC⊥平面BCDE,且交線為OC,所以過(guò)點(diǎn)A作AH⊥OC交OC于點(diǎn)H(圖略),則AH⊥平面BCDE,因?yàn)镾四邊形BCDE=2eq\r(3),所以四棱錐A-BCDE的體積VA-BCDE=2=eq\f(1,3)×2eq\r(3)·AH,所以AH=OA=eq\r(3),所以AO與AH重合,所以AO⊥平面BCDE,建立如圖所示的空間直角坐標(biāo)系,則O(0,0,0),C(-eq\r(3),0,0),E(0,1,0),A(0,0,eq\r(3)),易知平面DAE的一個(gè)法
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合作研發(fā)協(xié)議書
- 高新科技研發(fā)成果轉(zhuǎn)讓合同
- 公司場(chǎng)地長(zhǎng)期租賃合同
- 制造業(yè)工業(yè)互聯(lián)網(wǎng)平臺(tái)建設(shè)方案
- (高清版)DB2104∕T 0007-2021 撫順煤精
- 2025年吉林貨運(yùn)從業(yè)資格證考試題技巧答案大全
- 小學(xué)三年級(jí)口算題
- 2025年道路貨物運(yùn)輸從業(yè)資格考試復(fù)習(xí)題
- 2024-2025學(xué)年高中生物第7章細(xì)胞的增殖第1節(jié)第1課時(shí)細(xì)胞不能無(wú)限長(zhǎng)大植物細(xì)胞的有絲分裂練習(xí)含解析北師大版必修1
- 2024-2025學(xué)年八年級(jí)科學(xué)上冊(cè)第1章水和水的溶液第1節(jié)地球上的水教案新版浙教版
- TCPHA 33-2024 通 用碼頭和多用途碼頭綠色港口等級(jí)評(píng)價(jià)指南
- 信息技術(shù)咨詢服務(wù)合同5篇
- GB/T 44489-2024高級(jí)輔助駕駛地圖審查要求
- 四年級(jí)上冊(cè)四則混合運(yùn)算練習(xí)300道及答案
- 部編版道德與法治四年級(jí)下冊(cè)-全冊(cè)教案設(shè)計(jì)(表格版)
- 2022年江蘇省常州市強(qiáng)基計(jì)劃選拔數(shù)學(xué)試卷(附答案解析)
- 2024-2030年中國(guó)體外除顫器行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 2024-2030年中國(guó)人力資源行業(yè)市場(chǎng)發(fā)展前瞻及投資戰(zhàn)略研究報(bào)告
- 2024-2030年中國(guó)樺樹汁行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 2024年中考物理真題分類匯編(全國(guó))(第一期)專題12 機(jī)械能及能量守恒定律(第01期)(解析版)
- 偏差行為、卓越一生3.0版
評(píng)論
0/150
提交評(píng)論