2022年陜西省渭南市白水縣倉頡中學高三最后一模數(shù)學試題含解析_第1頁
2022年陜西省渭南市白水縣倉頡中學高三最后一模數(shù)學試題含解析_第2頁
2022年陜西省渭南市白水縣倉頡中學高三最后一模數(shù)學試題含解析_第3頁
2022年陜西省渭南市白水縣倉頡中學高三最后一模數(shù)學試題含解析_第4頁
2022年陜西省渭南市白水縣倉頡中學高三最后一模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.2.偶函數(shù)關于點對稱,當時,,求()A. B. C. D.3.閱讀下面的程序框圖,運行相應的程序,程序運行輸出的結果是()A.1.1 B.1 C.2.9 D.2.84.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.635.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則6.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.7.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.8.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.9.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.510.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要11.設復數(shù)z=,則|z|=()A. B. C. D.12.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線方程為,則________.14.“直線l1:與直線l2:平行”是“a=2”的_______條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).15.邊長為2的菱形中,與交于點O,E是線段的中點,的延長線與相交于點F,若,則______.16.設為拋物線的焦點,為上互相不重合的三點,且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.18.(12分)設函數(shù),.(Ⅰ)討論的單調性;(Ⅱ)時,若,,求證:.19.(12分)某芯片公司為制定下一年的研發(fā)投入計劃,需了解年研發(fā)資金投入量x(單位:億元)對年銷售額y(單位:億元)的影響.該公司對歷史數(shù)據(jù)進行對比分析,建立了兩個函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數(shù)據(jù),i=1,2,?,12,并對這些數(shù)據(jù)作了初步處理,得到了右側的散點圖及一些統(tǒng)計量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設ui和yi的相關系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷售額y需達到90億元,預測下一年的研發(fā)資金投入量x是多少億元?附:①相關系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e20.(12分)已知.(1)解關于x的不等式:;(2)若的最小值為M,且,求證:.21.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.22.(10分)已知函數(shù).(1)當時,判斷在上的單調性并加以證明;(2)若,,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據(jù)雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據(jù)圓的性質可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質,需掌握雙曲線的漸近線求法,屬于中檔題.2.D【解析】

推導出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【詳解】由于偶函數(shù)的圖象關于點對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當時,,則.故選:D.【點睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導出函數(shù)的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.3.C【解析】

根據(jù)程序框圖的模擬過程,寫出每執(zhí)行一次的運行結果,屬于基礎題.【詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點睛】本題考查了循環(huán)結構的程序框圖的讀取以及運行結果,屬于基礎題.4.B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.5.C【解析】

在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.6.D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質,直線與圓相切的性質,離心率的求法,屬于中檔題.7.A【解析】

推導出,分別取的中點,連結,則,推導出,從而,進而四面體的體積為,由此能求出結果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結,則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關系等基礎知識,考查運算求解能力.8.D【解析】

根據(jù)面面關系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.9.D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.10.B【解析】

根據(jù)充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關鍵是要弄清楚誰是條件,誰是結論.11.D【解析】

先用復數(shù)的除法運算將復數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點睛】本題考查復數(shù)的基本概念和基本運算,屬于基礎題.12.B【解析】

計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學生的計算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)雙曲線的標準方程寫出雙曲線的漸近線方程,結合題意可求得正實數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計算能力,屬于基礎題.14.必要不充分【解析】

先求解直線l1與直線l2平行的等價條件,然后進行判斷.【詳解】“直線l1:與直線l2:平行”等價于a=±2,故“直線l1:與直線l2:平行”是“a=2”的必要不充分條件.故答案為:必要不充分.【點睛】本題主要考查充分必要條件的判定,把已知條件進行等價轉化是求解這類問題的關鍵,側重考查邏輯推理的核心素養(yǎng).15.【解析】

取基向量,,然后根據(jù)三點共線以及向量加減法運算法則將,表示為基向量后再相乘可得.【詳解】如圖:設,又,且存在實數(shù)使得,,,,,,故答案為:.【點睛】本題考查了平面向量數(shù)量積的性質及其運算,屬中檔題.16.或【解析】

設出三點的坐標,結合等差數(shù)列的性質、線段垂直平分線的性質、拋物線的定義進行求解即可.【詳解】拋物線的準線方程為:,設,由拋物線的定義可知:,,,因為、、成等差數(shù)列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應用,考查了等差數(shù)列的性質,考查了數(shù)學運算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)利用零點分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結合基本不等式,求得的最小值.【詳解】(1)當時,,即,無解;當時,,即,得;當時,,即,得.故所求不等式的解集為.(2)因為,所以,則,.當且僅當即時取等號.故的最小值為.【點睛】本小題主要考查零點分段法解絕對值不等式,考查利用基本不等式求最值,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.18.(1)證明見解析;(2)證明見解析.【解析】

(1)首先對函數(shù)求導,再根據(jù)參數(shù)的取值,討論的正負,即可求出關于的單調性即可;(2)首先通過構造新函數(shù),討論新函數(shù)的單調性,根據(jù)新函數(shù)的單調性證明.【詳解】(1),令,則,令得,當時,則在單調遞減,當時,則在單調遞增,所以,當時,,即,則在上單調遞增,當時,,易知當時,,當時,,由零點存在性定理知,,不妨設,使得,當時,,即,當時,,即,當時,,即,所以在和上單調遞增,在單調遞減;(2)證明:構造函數(shù),,,,整理得,,(當時等號成立),所以在上單調遞增,則,所以在上單調遞增,,這里不妨設,欲證,即證由(1)知時,在上單調遞增,則需證,由已知有,只需證,即證,由在上單調遞增,且時,有,故成立,從而得證.【點睛】本題主要考查了導數(shù)含參分類討論單調性,借助構造函數(shù)和單調性證明不等式,屬于難題.19.(1)模型y=eλx+t的擬合程度更好;(2)(i)v=0.02x+3.84【解析】

(1)由相關系數(shù)求出兩個系數(shù),比較大小可得;(2)(i)先建立U額R0關于x的線性回歸方程,從而得出y(ii)把y=90代入(i)中的回歸方程可得x值.【詳解】本小題主要考查回歸分析等基礎知識,考查數(shù)據(jù)處理能力、運算求解能力、抽象概括能力及應用意識,考查統(tǒng)計與概率思想、分類與整合思想,考查數(shù)學抽象、數(shù)學運算、數(shù)學建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎性、綜合性與應用性.解:(1)r1r2則r1<r(2)(i)先建立U額R0由y=eλx+t,得lny=t+λx由于λ=i=1t=所以U額R0關于x所以lny=0.02x+3.84(ii)下一年銷售額y需達到90億元,即y=90,代入y=e0.02x+3.84又e4.4998≈90,所以所以x≈4.4998-3.84所以預測下一年的研發(fā)資金投入量約是32.99億元【點睛】本小題主要考查拋物線的定義、拋物線的標準方程、直線與拋物線的位置關系、導數(shù)幾何意義等基礎知識,考查推理論證能力、運算求解能力,考查函數(shù)與方程思想、化歸與轉化思想、數(shù)形結合思想等,考查數(shù)學運算、直觀想象、邏輯推理等核心素養(yǎng),體現(xiàn)基礎性、綜合性與應用性20.(1);(2)證明見解析.【解析】

(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數(shù),求得最小值,再利用均值不等式即可證明.【詳解】(1)當時,等價于,該不等式恒成立,當時,等價于,該不等式解集為,當時,等價于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因為,,,所以,,,所以,當且僅當時等號成立.【點睛】本題考查利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論