2025屆湖北省鄂州市第一中學高三第二次質量檢測試題數(shù)學試題含解析_第1頁
2025屆湖北省鄂州市第一中學高三第二次質量檢測試題數(shù)學試題含解析_第2頁
2025屆湖北省鄂州市第一中學高三第二次質量檢測試題數(shù)學試題含解析_第3頁
2025屆湖北省鄂州市第一中學高三第二次質量檢測試題數(shù)學試題含解析_第4頁
2025屆湖北省鄂州市第一中學高三第二次質量檢測試題數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖北省鄂州市第一中學高三第二次質量檢測試題數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.22.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.3.設雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.64.在聲學中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.5.已知函數(shù),若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數(shù)的取值范圍為()A. B. C. D.6.已知正項等比數(shù)列的前項和為,則的最小值為()A. B. C. D.7.點為不等式組所表示的平面區(qū)域上的動點,則的取值范圍是()A. B. C. D.8.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態(tài)分布(),若,則D.設是實數(shù),“”是“”的充分不必要條件9.記為等差數(shù)列的前項和.若,,則()A.5 B.3 C.-12 D.-1310.函數(shù)y=sin2x的圖象可能是A. B.C. D.11.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.12.已知數(shù)列的前項和為,且,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從一箱產品中隨機地抽取一件,設事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產品不是一等品”的概率為________14.已知函數(shù)是定義在上的奇函數(shù),且周期為,當時,,則的值為___________________.15.“北斗三號”衛(wèi)星的運行軌道是以地心為一個焦點的橢圓.設地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,則“北斗三號”衛(wèi)星運行軌道的離心率為__________.16.已知復數(shù)對應的點位于第二象限,則實數(shù)的范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在數(shù)列中,,(1)求數(shù)列的通項公式;(2)若存在,使得成立,求實數(shù)的最小值18.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)已知函數(shù)().(1)討論的單調性;(2)若對,恒成立,求的取值范圍.20.(12分)已知橢圓的短軸的兩個端點分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個不同的交點、,設為直線上一點,且直線、的斜率的積為.證明:點在軸上.21.(12分)已知函數(shù).(1)若,,求函數(shù)的單調區(qū)間;(2)時,若對一切恒成立,求a的取值范圍.22.(10分)設函數(shù),.(1)求函數(shù)的極值;(2)對任意,都有,求實數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎題.2.A【解析】

設橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A本題主要考查橢圓,雙曲線的定義和性質以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.3.A【解析】

根據(jù)雙曲線的標準方程求出右頂點、右焦點的坐標,再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標,最后利用三角形的面積公式進行求解即可.【詳解】由雙曲線的標準方程可知中:,因此右頂點的坐標為,右焦點的坐標為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A本題考查了雙曲線的漸近線方程的應用,考查了兩直線平行的性質,考查了數(shù)學運算能力.4.D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當時,,∴,當時,,∴,∴,故選:D.本小題主要考查對數(shù)運算,屬于基礎題.5.D【解析】

根據(jù)中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點的橫坐標互為相反數(shù),不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數(shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域為,故.故選D.本小題主要考查平面平面向量數(shù)量積為零的坐標表示,考查化歸與轉化的數(shù)學思想方法,考查利用導數(shù)研究函數(shù)的最小值,考查分析與運算能力,屬于較難的題目.6.D【解析】

由,可求出等比數(shù)列的通項公式,進而可知當時,;當時,,從而可知的最小值為,求解即可.【詳解】設等比數(shù)列的公比為,則,由題意得,,得,解得,得.當時,;當時,,則的最小值為.故選:D.本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質,考查學生的計算求解能力,屬于中檔題.7.B【解析】

作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.本題主要考查線性規(guī)劃的應用,根據(jù)目標函數(shù)的幾何意義結合斜率公式是解決本題的關鍵.8.D【解析】

由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態(tài)分布的性質可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.9.B【解析】

由題得,,解得,,計算可得.【詳解】,,,,解得,,.故選:B本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學生運算求解能力.10.D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數(shù),排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復.11.A【解析】

設平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【詳解】設平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質的應用,考查計算能力,屬于中等題.12.C【解析】

根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.0.35【解析】

根據(jù)對立事件的概率和為1,結合題意,即可求出結果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.本題考查了求互斥事件與對立事件的概率的應用問題,屬于基礎題.14.【解析】

由題意可得:,周期為,可得,可求出,最后再求的值即可.【詳解】解:函數(shù)是定義在上的奇函數(shù),.由周期為,可知,,..故答案為:.本題主要考查函數(shù)的基本性質,屬于基礎題.15.【解析】

畫出圖形,結合橢圓的定義和題設條件,求得的值,即可求得橢圓的離心率,得到答案.【詳解】如圖所示,設橢圓的長半軸為,半焦距為,因為地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,可得,解得,所以橢圓的離心率為.故答案為:.本題主要考查了橢圓的離心率的求解,其中解答中熟記橢圓的幾何性質,列出方程組,求得的值是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.16.【解析】

由復數(shù)對應的點,在第二象限,得,且,從而求出實數(shù)的范圍.【詳解】解:∵復數(shù)對應的點位于第二象限,∴,且,∴,故答案為:.本題主要考查復數(shù)與復平面內對應點之間的關系,解不等式,且是解題的關鍵,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)由得,兩式相減可得是從第二項開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數(shù)列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數(shù)的最小值.本題主要考查地推數(shù)列的應用,屬于中檔題.18.(1);(2)【解析】

(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項和公式,即可求解.【詳解】(1)因為,所以,又所以數(shù)列為等比數(shù)列,且首項為,公比為.故(2)由(1)知,所以所以本題考查等比數(shù)列的定義及通項公式、等差數(shù)列和等比數(shù)列的前項和,屬于基礎題.19.(1)①當時,在上單調遞減,在上單調遞增;②當時,在上單調遞增;(2).【解析】

(1)求出函數(shù)的定義域和導函數(shù),,對討論,得導函數(shù)的正負,得原函數(shù)的單調性;(2)法一:由得,分別運用導函數(shù)得出函數(shù)(),的單調性,和其函數(shù)的最值,可得,可得的范圍;法二:由得,化為令(),研究函數(shù)的單調性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得,得,在上單調遞減,在上單調遞增;②當時,恒成立,在上單調遞增;(2)法一:由得,令(),則,在上單調遞減,,,即,令,則,在上單調遞增,,在上單調遞減,所以,即,(*)當時,,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調遞減,,,即,當時,由(Ⅰ)知在上單調遞增,恒成立,滿足題意當時,令,則,所以在上單調遞減,又,當時,,,使得,當時,,即,又,,,不滿足題意,綜上所述,的取值范圍是本題考查對于含參數(shù)的函數(shù)的單調性的討論,不等式恒成立時,求解參數(shù)的范圍,屬于難度題.20.(1);(2)見解析.【解析】

(1)由已知條件得出、的值,進而可得出的值,由此可求得橢圓的方程;(2)設點,可得,且,,求出直線的斜率,進而可求得直線與的方程,將直線直線與的方程聯(lián)立,求出點的坐標,即可證得結論.【詳解】(1)由題設,得,所以,即.故橢圓的方程為;(2)設,則,,.所以直線的斜率為,因為直線、的斜率的積為,所以直線的斜率為.直線的方程為,直線的方程為.聯(lián)立,解得點的縱坐標為.因為點在橢圓上,所以,則,所以點在軸上.本題考查橢圓方程的求解,同時也考查了點在定直線的證明,考查計算能力與推理能力,屬于中等題.21.(1)單調遞減區(qū)間為,單調遞增區(qū)間為;(2)【解析】

(1)求導,根據(jù)導數(shù)與函數(shù)單調性關系即可求出.(2)解法一:分類討論:當時,觀察式子可得恒成立;當時,利用導數(shù)判斷函數(shù)為單調遞增,可知;當時,令,由,,根據(jù)零點存在性定理可得,進而可得在上,單調遞減,即不滿足題意;解法二:通過分離參數(shù)可知條件等價于恒成立,進而記,問題轉化為求在上的最小值問題,通過二次求導,結合洛比達法則計算可得結論.【詳解】(1)當,,,,令,解得,當時,,當時,,在上單調遞減,在上單調遞增.(2)解法一:當時,函數(shù),若時,此時對任意都有,所以恒成立;若時,對任意都有,,所以,所以在上為增函數(shù),所以,即時滿足題意;若時,令,則,所以在上單調遞增,,,可知,一定存在使得,且當時,,所以在上,單調遞減,從而有時,,不滿足題意;綜上可知,實數(shù)a的取值范圍為.解法二:當時,函數(shù),又當時,,對一切恒成立等價于恒成立,記,其中,則,令,則,在上單調遞增,,恒成立,從而在上單調遞增,,由洛比達法則可知,,,解得.實數(shù)a的取值范圍為.本題考查利用導數(shù)研究函數(shù)的單調性與不等式恒成立問題,考查了分類與整合的解題思想,涉及分離參數(shù)法等技巧、涉及到洛比達法則等知識,注意解題方法的積累,屬于難題.22.(1)當時,無極值;當時,極小值為;(2).【解析】

(1)求導,對參數(shù)進行分類討論,即可容易求得函數(shù)的極值;(2)構造函數(shù),兩次求導,根據(jù)函數(shù)單調性,由恒成立問題求參數(shù)范圍即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論