甘肅省民樂一中2021-2022學(xué)年高考數(shù)學(xué)押題試卷含解析_第1頁
甘肅省民樂一中2021-2022學(xué)年高考數(shù)學(xué)押題試卷含解析_第2頁
甘肅省民樂一中2021-2022學(xué)年高考數(shù)學(xué)押題試卷含解析_第3頁
甘肅省民樂一中2021-2022學(xué)年高考數(shù)學(xué)押題試卷含解析_第4頁
甘肅省民樂一中2021-2022學(xué)年高考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,集合,則A. B.或C. D.2.某人用隨機(jī)模擬的方法估計(jì)無理數(shù)的值,做法如下:首先在平面直角坐標(biāo)系中,過點(diǎn)作軸的垂線與曲線相交于點(diǎn),過作軸的垂線與軸相交于點(diǎn)(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計(jì)出這些豆子在曲線上方的有粒,則無理數(shù)的估計(jì)值是()A. B. C. D.3.函數(shù)的圖象大致為()A. B.C. D.4.已知函數(shù),若函數(shù)的所有零點(diǎn)依次記為,且,則()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.6.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.127.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿足,,,則雙曲線的離心率為A. B. C. D.58.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.下列命題為真命題的個(gè)數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.310.點(diǎn)為的三條中線的交點(diǎn),且,,則的值為()A. B. C. D.11.已知為定義在上的奇函數(shù),若當(dāng)時(shí),(為實(shí)數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.12.設(shè)復(fù)數(shù)滿足為虛數(shù)單位),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,圓.已知過原點(diǎn)且相互垂直的兩條直線和,其中與圓相交于,兩點(diǎn),與圓相切于點(diǎn).若,則直線的斜率為_____________.14.已知為橢圓內(nèi)一定點(diǎn),經(jīng)過引一條弦,使此弦被點(diǎn)平分,則此弦所在的直線方程為________________.15.在平面直角坐標(biāo)系xOy中,A,B為x軸正半軸上的兩個(gè)動(dòng)點(diǎn),P(異于原點(diǎn)O)為y軸上的一個(gè)定點(diǎn).若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長為_____.16.函數(shù)(為自然對數(shù)的底數(shù),),若函數(shù)恰有個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為__________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)為拋物線的焦點(diǎn),,為拋物線上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn).(Ⅰ)若點(diǎn)在線段上,求的最小值;(Ⅱ)當(dāng)時(shí),求點(diǎn)縱坐標(biāo)的取值范圍.18.(12分)已知,.(1)當(dāng)時(shí),證明:;(2)設(shè)直線是函數(shù)在點(diǎn)處的切線,若直線也與相切,求正整數(shù)的值.19.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù).).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線與直線其中的一個(gè)交點(diǎn)為,且點(diǎn)極徑.極角(1)求曲線的極坐標(biāo)方程與點(diǎn)的極坐標(biāo);(2)已知直線的直角坐標(biāo)方程為,直線與曲線相交于點(diǎn)(異于原點(diǎn)),求的面積.20.(12分)已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.22.(10分)已知,,為正數(shù),且,證明:(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

由可得,解得或,所以或,又,所以,故選C.2.D【解析】

利用定積分計(jì)算出矩形中位于曲線上方區(qū)域的面積,進(jìn)而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達(dá)式即可.【詳解】在函數(shù)的解析式中,令,可得,則點(diǎn),直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點(diǎn)睛】本題考查利用隨機(jī)模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時(shí)也考查了利用定積分計(jì)算平面區(qū)域的面積,考查計(jì)算能力,屬于中等題.3.A【解析】

確定函數(shù)在定義域內(nèi)的單調(diào)性,計(jì)算時(shí)的函數(shù)值可排除三個(gè)選項(xiàng).【詳解】時(shí),函數(shù)為減函數(shù),排除B,時(shí),函數(shù)也是減函數(shù),排除D,又時(shí),,排除C,只有A可滿足.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負(fù),函數(shù)值的變化趨勢排除,最后剩下的一個(gè)即為正確選項(xiàng).4.C【解析】

令,求出在的對稱軸,由三角函數(shù)的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數(shù)周期,令,可得.則函數(shù)在上有8條對稱軸.根據(jù)正弦函數(shù)的性質(zhì)可知,將以上各式相加得:故選:C.【點(diǎn)睛】本題考查了三角函數(shù)的對稱性,考查了三角函數(shù)的周期性,考查了等差數(shù)列求和.本題的難點(diǎn)是將所求的式子拆分為的形式.5.C【解析】

根據(jù)程序框圖寫出幾次循環(huán)的結(jié)果,直到輸出結(jié)果是8時(shí).【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時(shí),滿足輸出的值為8.故選:C【點(diǎn)睛】此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫出每次循環(huán)結(jié)果即可解決,屬于簡單題目.6.C【解析】

由開始,按照框圖,依次求出s,進(jìn)行判斷?!驹斀狻浚蔬xC.【點(diǎn)睛】框圖問題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進(jìn)行判斷,是解題關(guān)鍵。7.D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點(diǎn)睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.8.A【解析】

由復(fù)數(shù)的除法運(yùn)算可整理得到,由此得到對應(yīng)的點(diǎn)的坐標(biāo),從而確定所處象限.【詳解】由得:,對應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)對應(yīng)的點(diǎn)所在象限的求解,涉及到復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.9.C【解析】

對于①中,根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和不等式的性質(zhì),可判定值正確的;對于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進(jìn)而得到,即可判定是錯(cuò)誤的;對于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進(jìn)而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因?yàn)椋瑒t又由,所以,即,所以②不正確;對于③中,設(shè)函數(shù),則,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點(diǎn)睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運(yùn)算能力,屬于中檔試題.10.B【解析】

可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進(jìn)行數(shù)量積的運(yùn)算即可求出.【詳解】如圖:點(diǎn)為的三條中線的交點(diǎn),由可得:,又因,,.故選:B【點(diǎn)睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運(yùn)算及向量的數(shù)量積的運(yùn)算,考查運(yùn)算求解能力,屬于中檔題.11.A【解析】

先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當(dāng)時(shí),.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點(diǎn)睛】本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).12.B【解析】

易得,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法、除法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè):,:,利用點(diǎn)到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設(shè)直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【點(diǎn)睛】本題主要考查點(diǎn)到直線的距離公式的運(yùn)用,并結(jié)合圓的方程,垂徑定理的基本知識,屬于中檔題.14.【解析】

設(shè)弦所在的直線與橢圓相交于、兩點(diǎn),利用點(diǎn)差法可求得直線的斜率,進(jìn)而可求得直線的點(diǎn)斜式方程,化為一般式即可.【詳解】設(shè)弦所在的直線與橢圓相交于、兩點(diǎn),由于點(diǎn)為弦的中點(diǎn),則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點(diǎn)睛】本題考查利用弦的中點(diǎn)求弦所在直線的方程,一般利用點(diǎn)差法,也可以利用韋達(dá)定理設(shè)而不求法來解答,考查計(jì)算能力,屬于中等題.15.【解析】分析:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結(jié)合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長.詳解:設(shè)O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則∵∠APB的大小恒為定值,

∴t=,∴|OP|=.故答案為點(diǎn)睛:本題考查圓與圓的位置關(guān)系,考查差角的正切公式,考查學(xué)生的計(jì)算能力,屬于中檔題.16.【解析】

令,則,恰有四個(gè)解.由判斷函數(shù)增減性,求出最小值,列出相應(yīng)不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個(gè)解.有兩個(gè)解,由,可得在上單調(diào)遞減,在上單調(diào)遞增,則,可得.設(shè)的負(fù)根為,由題意知,,,,則,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)【解析】

(1)由拋物線的性質(zhì),當(dāng)軸時(shí),最?。唬?)設(shè)點(diǎn),,分別代入拋物線方程和得到三個(gè)方程,消去,得到關(guān)于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標(biāo)準(zhǔn)方程,,根據(jù)拋物線的性質(zhì),當(dāng)軸時(shí),最小,最小值為,即為4.(2)由題意,設(shè)點(diǎn),,其中,.則,①,②因?yàn)?,,,所?③由①②③,得,由,且,得,解不等式,得點(diǎn)縱坐標(biāo)的范圍為.【點(diǎn)睛】本題主要考查拋物線的方程和性質(zhì)和二次方程的解的問題,考查運(yùn)算能力,此類問題能較好的考查考生的邏輯思維能力、運(yùn)算求解能力、分析問題解決問題的能力等,易錯(cuò)點(diǎn)是復(fù)雜式子的變形能力不足,導(dǎo)致錯(cuò)解.18.(1)證明見解析;(2).【解析】

(1)令,求導(dǎo),可知單調(diào)遞增,且,,因而在上存在零點(diǎn),在此取得最小值,再證最小值大于零即可.(2)根據(jù)題意得到在點(diǎn)處的切線的方程①,再設(shè)直線與相切于點(diǎn),有,即,再求得在點(diǎn)處的切線直線的方程為②由①②可得,即,根據(jù),轉(zhuǎn)化為,,令,轉(zhuǎn)化為要使得在上存在零點(diǎn),則只需,求解.【詳解】(1)證明:設(shè),則,單調(diào)遞增,且,,因而在上存在零點(diǎn),且在上單調(diào)遞減,在上單調(diào)遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設(shè)直線與相切于點(diǎn),注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數(shù)可知,,所以,,令,則,當(dāng)時(shí),為單調(diào)遞增函數(shù),且,從而在上無零點(diǎn);當(dāng)時(shí),要使得在上存在零點(diǎn),則只需,,因?yàn)闉閱握{(diào)遞增函數(shù),,所以;因?yàn)闉閱握{(diào)遞增函數(shù),且,因此;因?yàn)闉檎麛?shù),且,所以.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.19.(1)極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為(2)【解析】

(1)利用極坐標(biāo)方程、普通方程、參數(shù)方程間的互化公式即可;(2)只需算出A、B兩點(diǎn)的極坐標(biāo),利用計(jì)算即可.【詳解】(1)曲線C:(為參數(shù),),將代入,解得,即曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(2)由(1),得點(diǎn)的極坐標(biāo)為,由直線過原點(diǎn)且傾斜角為,知點(diǎn)的極坐標(biāo)為,.【點(diǎn)睛】本題考查極坐標(biāo)方程、普通方程、參數(shù)方程間的互化以及利用極徑求三角形面積,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.20.(1)答案不唯一,具體見解析(2)【解析】

(1)分類討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間.(2)分離出參數(shù)后,轉(zhuǎn)化為函數(shù)的最值問題解決,注意函數(shù)定義域.【詳解】(1)由得或①當(dāng)時(shí),由,得.由,得或此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.②當(dāng)時(shí),由,得由,得或此時(shí)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和綜上:當(dāng)時(shí),單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.(2)依題意,不等式恒成立等價(jià)于在上恒成立,可得,在上恒成立,設(shè),則令,得,(舍)當(dāng)時(shí),;當(dāng)時(shí),當(dāng)變化時(shí),,變化情況如下表:10單調(diào)遞增單調(diào)遞減∴當(dāng)時(shí),取得最大值,,∴.∴的取值范圍是.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究不等式的恒成立問題,屬于中檔題.21.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論