版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
中學(xué)2025屆高三年級(jí)第二學(xué)期期末數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在正四棱柱中,,分別為的中點(diǎn),異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且2.若數(shù)列滿足且,則使的的值為()A. B. C. D.3.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.《易·系辭上》有“河出圖,洛出書”之說(shuō),河圖、洛書是中華文化,陰陽(yáng)術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽(yáng)數(shù),黑點(diǎn)為陰數(shù),若從陰數(shù)和陽(yáng)數(shù)中各取一數(shù),則其差的絕對(duì)值為5的概率為A. B. C. D.5.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限6.我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)(即質(zhì)數(shù))的和”,如,.在不超過(guò)20的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對(duì)7.是虛數(shù)單位,則()A.1 B.2 C. D.8.已知實(shí)數(shù)滿足約束條件,則的最小值是A. B. C.1 D.49.已知,,是平面內(nèi)三個(gè)單位向量,若,則的最小值()A. B. C. D.510.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時(shí)的值為()A.2020 B.20l9 C.2018 D.201711.已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.12.已知全集,集合,則=()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓,,若橢圓上存在點(diǎn)使得為等邊三角形(為原點(diǎn)),則橢圓的離心率為_(kāi)________.14.若且時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為_(kāi)_______.15.若的展開(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中各項(xiàng)的系數(shù)和是________.16.已知在等差數(shù)列中,,,前n項(xiàng)和為,則________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)小麗在同一城市開(kāi)的2家店鋪各有2名員工.節(jié)假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無(wú)人休假,則調(diào)劑1人到該店維持營(yíng)業(yè),否則該店就停業(yè).(1)求發(fā)生調(diào)劑現(xiàn)象的概率;(2)設(shè)營(yíng)業(yè)店鋪數(shù)為X,求X的分布列和數(shù)學(xué)期望.18.(12分)已知數(shù)列的前項(xiàng)和為,.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前項(xiàng)和.求證:.19.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a20.(12分)在多面體中,四邊形是正方形,平面,,,為的中點(diǎn).(1)求證:;(2)求平面與平面所成角的正弦值.21.(12分)[選修4-5:不等式選講]設(shè)函數(shù).(1)求不等式的解集;(2)已知關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.22.(10分)已知首項(xiàng)為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運(yùn)算求解的能力,屬于中檔題.2.C【解析】因?yàn)椋允堑炔顢?shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.3.C【解析】,令解得當(dāng),的圖像如下圖當(dāng),的圖像如下圖由上兩圖可知,是充要條件【考點(diǎn)定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.4.A【解析】
陽(yáng)數(shù):,陰數(shù):,然后分析陰數(shù)和陽(yáng)數(shù)差的絕對(duì)值為5的情況數(shù),最后計(jì)算相應(yīng)概率.【詳解】因?yàn)殛?yáng)數(shù):,陰數(shù):,所以從陰數(shù)和陽(yáng)數(shù)中各取一數(shù)差的絕對(duì)值有:個(gè),滿足差的絕對(duì)值為5的有:共個(gè),則.故選:A.本題考查實(shí)際背景下古典概型的計(jì)算,難度一般.古典概型的概率計(jì)算公式:.5.C【解析】分析:根據(jù)復(fù)數(shù)的運(yùn)算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對(duì)應(yīng)的點(diǎn),得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點(diǎn)睛:本題主要考查了復(fù)數(shù)的四則運(yùn)算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運(yùn)算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.6.A【解析】
首先確定不超過(guò)的素?cái)?shù)的個(gè)數(shù),根據(jù)古典概型概率求解方法計(jì)算可得結(jié)果.【詳解】不超過(guò)的素?cái)?shù)有,,,,,,,,共個(gè),從這個(gè)素?cái)?shù)中任選個(gè),有種可能;其中選取的兩個(gè)數(shù),其和等于的有,,共種情況,故隨機(jī)選出兩個(gè)不同的數(shù),其和等于的概率.故選:.本題考查古典概型概率問(wèn)題的求解,屬于基礎(chǔ)題.7.C【解析】
由復(fù)數(shù)除法的運(yùn)算法則求出,再由模長(zhǎng)公式,即可求解.【詳解】由.故選:C.本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.8.B【解析】
作出該不等式組表示的平面區(qū)域,如下圖中陰影部分所示,設(shè),則,易知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),z取得最小值,由,解得,所以,所以,故選B.9.A【解析】
由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點(diǎn)間的距離的幾何意義可求出結(jié)果.【詳解】解:設(shè),,,則,從而,等號(hào)可取到.故選:A此題考查的是平面向量的坐標(biāo)、模的運(yùn)算,利用整體代換,再結(jié)合距離公式求解,屬于難題.10.B【解析】
根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時(shí),,,,,當(dāng)時(shí),,故前項(xiàng)和最大.故選:.本題考查了數(shù)列和的最值問(wèn)題,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.11.C【解析】試題分析:通過(guò)對(duì)以下四個(gè)四棱錐的三視圖對(duì)照可知,只有選項(xiàng)C是符合要求的.考點(diǎn):三視圖12.D【解析】
先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意求出點(diǎn)N的坐標(biāo),將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),屬于中檔題.14.【解析】
將不等式兩邊同時(shí)平方進(jìn)行變形,然后得到對(duì)應(yīng)不等式組,對(duì)的取值進(jìn)行分類,將問(wèn)題轉(zhuǎn)化為二次函數(shù)在區(qū)間上恒正、恒負(fù)時(shí)求參數(shù)范圍,列出對(duì)應(yīng)不等式組,即可求解出的取值范圍.【詳解】因?yàn)?,所以,所以,所以,所以或,?dāng)時(shí),對(duì)且不成立,當(dāng)時(shí),取,顯然不滿足,所以,所以,解得;當(dāng)時(shí),取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.本題考查根據(jù)不等式恒成立求解參數(shù)范圍,難度較難.根據(jù)不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對(duì)參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨(dú)分離出來(lái),再以函數(shù)的最值與參數(shù)的大小關(guān)系求解出參數(shù)范圍.15.【解析】
由題意得出展開(kāi)式中共有11項(xiàng),;再令求得展開(kāi)式中各項(xiàng)的系數(shù)和.【詳解】由的展開(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以展開(kāi)式中共有11項(xiàng),所以;令,可求得展開(kāi)式中各項(xiàng)的系數(shù)和是:.故答案為:1.本小題主要考查二項(xiàng)式展開(kāi)式的通項(xiàng)公式的運(yùn)用,考查二項(xiàng)式展開(kāi)式各項(xiàng)系數(shù)和的求法,屬于基礎(chǔ)題.16.39【解析】
設(shè)等差數(shù)列公差為d,首項(xiàng)為,再利用基本量法列式求解公差與首項(xiàng),進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列公差為d,首項(xiàng)為,根據(jù)題意可得,解得,所以.故答案為:39本題考查等差數(shù)列的基本量計(jì)算以及前n項(xiàng)和的公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)見(jiàn)解析,【解析】
(1)根據(jù)題意設(shè)出事件,列出概率,運(yùn)用公式求解;(2)由題得,X的所有可能取值為,根據(jù)(1)和變量對(duì)應(yīng)的事件,可得變量對(duì)應(yīng)的概率,即可得分布列和期望值.【詳解】(1)記2家小店分別為A,B,A店有i人休假記為事件(,1,2),B店有i人,休假記為事件(,1,2),發(fā)生調(diào)劑現(xiàn)象的概率為P.則,,.所以.答:發(fā)生調(diào)劑現(xiàn)象的概率為.(2)依題意,X的所有可能取值為0,1,2.則,,.所以X的分布表為:X012P所以.本題是一道考查概率和期望的常考題型.18.(1)(2)證明見(jiàn)解析【解析】
(1)利用求得數(shù)列的通項(xiàng)公式.(2)先將縮小即,由此結(jié)合裂項(xiàng)求和法、放縮法,證得不等式成立.【詳解】(1)∵,令,得.又,兩式相減,得.∴.(2)∵.又∵,,∴.∴.∴.本小題主要考查已知求,考查利用放縮法證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.19.(I)an=2n-1,bn=【解析】
(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計(jì)算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+本題考查了等差數(shù)列,等比數(shù)列,裂項(xiàng)求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.20.(1)證明見(jiàn)解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點(diǎn),∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個(gè)法向量,∴,∴平面與平面所成角的正弦值為.本題第一問(wèn)考查線線垂直,先證線面垂直時(shí)解題關(guān)鍵,第二問(wèn)考查二面角,建立空間直角坐標(biāo)系是解題關(guān)鍵,屬于中檔題.21.(1)(2)【解析】
(1)零點(diǎn)分段去絕對(duì)值解不等式即可(2)由題在上有解,去絕對(duì)值分離變量a即可.【詳解】(1)不等式,即等價(jià)于或或解得,所以原不等式的解集為;(2)當(dāng)時(shí),不等式,即,所以在上有解即在上有解,所以,.本題考查絕對(duì)值不等式解法
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版辦公家具展會(huì)租賃與銷售合作合同3篇
- 二零二五年度武漢東湖風(fēng)景區(qū)旅游開(kāi)發(fā)合同3篇
- 二零二五年度藝術(shù)品共同創(chuàng)作與展覽合同2篇
- 二零二五版房屋租賃合同免責(zé)及維修保障3篇
- 二零二五版燈光照明工程設(shè)計(jì)咨詢合同2篇
- 二零二五版班組分包消防設(shè)施分包服務(wù)合同樣本3篇
- 二零二五版新媒體行業(yè)勞動(dòng)合同制度及知識(shí)產(chǎn)權(quán)保護(hù)協(xié)議2篇
- 二零二五年空調(diào)銷售與綠色消費(fèi)倡導(dǎo)合同3篇
- 二零二五年度鋼管模板租賃環(huán)保要求及價(jià)格評(píng)估合同3篇
- 二零二五版網(wǎng)絡(luò)安全威脅情報(bào)共享與預(yù)警服務(wù)合同范本3篇
- 2025-2030年中國(guó)糖醇市場(chǎng)運(yùn)行狀況及投資前景趨勢(shì)分析報(bào)告
- 八年級(jí)散文閱讀專題訓(xùn)練-八年級(jí)語(yǔ)文上冊(cè)知識(shí)梳理與能力訓(xùn)練
- 2024年杭州市中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2024-2025學(xué)年人教版八年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試模擬試題(含答案)
- 《環(huán)境感知技術(shù)》2024年課程標(biāo)準(zhǔn)(含課程思政設(shè)計(jì))
- GB/T 45079-2024人工智能深度學(xué)習(xí)框架多硬件平臺(tái)適配技術(shù)規(guī)范
- 2024年安徽省銅陵市公開(kāi)招聘警務(wù)輔助人員(輔警)筆試自考練習(xí)卷二含答案
- 國(guó)家安全教育高教-第六章堅(jiān)持以經(jīng)濟(jì)安全為基礎(chǔ)
- 水處理藥劑采購(gòu)項(xiàng)目技術(shù)方案(技術(shù)方案)
- 2024年城市環(huán)衛(wèi)一體化服務(wù)合同
- 工地春節(jié)安全培訓(xùn)
評(píng)論
0/150
提交評(píng)論