版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省湖州市天略外國語學(xué)校2025年招生模擬考試數(shù)學(xué)試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標(biāo)原點,拋物線的準(zhǔn)線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準(zhǔn)線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準(zhǔn)線上的射影為,則三點在同一條直線上.其中所有正確命題的個數(shù)為()A.1 B.2 C.3 D.42.如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點,M為棱AD的中點,設(shè)P,Q為底面ABCD內(nèi)的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.3.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.4.已知定義在上函數(shù)的圖象關(guān)于原點對稱,且,若,則()A.0 B.1 C.673 D.6745.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.6.已知滿足,,,則在上的投影為()A. B. C. D.27.已知集合,,則=()A. B. C. D.8.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)的取值范圍為()A. B.C. D.9.已知集合,則=A. B. C. D.10.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標(biāo)為3,且,則拋物線的方程是()A. B. C. D.11.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實現(xiàn)了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D.去年同期浙江省的GDP總量超過了4500億元12.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線(,)有相同的焦點,其左、右焦點分別為、,若橢圓與雙曲線在第一象限內(nèi)的交點為,且,則雙曲線的離心率為__________.14.已知函數(shù)有且只有一個零點,則實數(shù)的取值范圍為__________.15.已知向量,,滿足,,,則的取值范圍為_________.16.如圖,在平行四邊形中,,,則的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.18.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且是與的等差中項.(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項和為,求滿足的最小正整數(shù)的值.19.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項和,且、、成等比數(shù)列,.設(shè)數(shù)列的前項和為,且滿足.(1)求數(shù)列、的通項公式;(2)令,證明:.20.(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數(shù)隨時間變化的散點圖.為了預(yù)測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點圖判斷,與哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數(shù)的真實數(shù)據(jù)19752744451559747111(ⅰ)當(dāng)1月25日至1月27日這3天的誤差(模型預(yù)測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領(lǐng)導(dǎo)下,全國人民共同采取了強力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預(yù)測數(shù)據(jù),則認為防護措施有效,請判斷預(yù)防措施是否有效?附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850721.(12分)心形線是由一個圓上的一個定點,當(dāng)該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標(biāo)系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標(biāo)原點的直角坐標(biāo)系中.已知曲線的參數(shù)方程為(為參數(shù)).(1)求曲線的極坐標(biāo)方程;(2)若曲線與相交于、、三點,求線段的長.22.(10分)在中,角的對邊分別為,且.(1)求角的大?。唬?)若函數(shù)圖象的一條對稱軸方程為且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
①:由拋物線的定義可知,從而可求的坐標(biāo);②:做關(guān)于準(zhǔn)線的對稱點為,通過分析可知當(dāng)三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達定理,可知焦點坐標(biāo)的關(guān)系,進而可求,從而可判斷出的關(guān)系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【詳解】解:對于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設(shè),則關(guān)于準(zhǔn)線的對稱點為,故,當(dāng)且僅當(dāng)三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點坐標(biāo)為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結(jié)合初中的“飲馬問題”分析出何時取最小值.2.C【解析】
把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對稱點為,,當(dāng)且僅當(dāng)共線時取等號,∴所求最小值為.故選:C.本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質(zhì)求得最小值.3.B【解析】
由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.4.B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.5.A【解析】試題分析:由題意,得,解得,故選A.考點:函數(shù)的定義域.6.A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A本題考查向量的投影,屬于基礎(chǔ)題.7.C【解析】
計算,,再計算交集得到答案.【詳解】,,故.故選:.本題考查了交集運算,意在考查學(xué)生的計算能力.8.C【解析】
將函數(shù)解析式化簡,并求得,根據(jù)當(dāng)時可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時,,故函數(shù)在上單調(diào)遞增,當(dāng)時,;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實數(shù)的取值范圍為.故選:C.本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.9.C【解析】
本題考查集合的交集和一元二次不等式的解法,滲透了數(shù)學(xué)運算素養(yǎng).采取數(shù)軸法,利用數(shù)形結(jié)合的思想解題.【詳解】由題意得,,則.故選C.不能領(lǐng)會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.10.B【解析】
利用拋物線的定義可得,,把線段AB中點的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點為F,設(shè)點,由拋物線的定義可知,線段AB中點的橫坐標(biāo)為3,又,,可得,所以拋物線方程為.故選:B.本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.11.D【解析】
根據(jù)折線圖、柱形圖的性質(zhì),對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.本題考查折線圖、柱形圖的識別,考查學(xué)生的閱讀能力、數(shù)據(jù)處理能力,屬于中檔題.12.B【解析】
模擬程序框圖運行分析即得解.【詳解】;;.所以①處應(yīng)填寫“”故選:B本題主要考查程序框圖,意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先根據(jù)橢圓得出焦距,結(jié)合橢圓的定義求出,結(jié)合雙曲線的定義求出雙曲線的實半軸,最后利用離心率的公式求出離心率即可.【詳解】解:因為橢圓,則焦點為,又因為橢圓與雙曲線(,)有相同的焦點,橢圓與雙曲線在第一象限內(nèi)的交點為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實軸長為:,實半軸為則雙曲線的離心率為:.故答案為:本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問題.14.【解析】
當(dāng)時,轉(zhuǎn)化條件得有唯一實數(shù)根,令,通過求導(dǎo)得到的單調(diào)性后數(shù)形結(jié)合即可得解.【詳解】當(dāng)時,,故不是函數(shù)的零點;當(dāng)時,即,令,,,當(dāng)時,;當(dāng)時,,的單調(diào)減區(qū)間為,增區(qū)間為,又,可作出的草圖,如圖:則要使有唯一實數(shù)根,則.故答案為:.本題考查了導(dǎo)數(shù)的應(yīng)用,考查了轉(zhuǎn)化化歸思想和數(shù)形結(jié)合思想,屬于難題.15.【解析】
設(shè),,,,由,,,根據(jù)平面向量模的幾何意義,可得A點軌跡為以O(shè)為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,為的距離,利用數(shù)形結(jié)合求解.【詳解】設(shè),,,,如圖所示:因為,,,所以A點軌跡為以O(shè)為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,則即的距離,由圖可知,.故答案為:本題主要考查平面向量的模及運算的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.16.【解析】
根據(jù)ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數(shù)量積的運算,考查了計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當(dāng)時,,,當(dāng)時,②,①②得:,,適合,故;(2),.本題考查法求數(shù)列的通項公式,考查裂項求和,是基礎(chǔ)題.18.(1)見解析,(2)最小正整數(shù)的值為35.【解析】
(1)由等差中項可知,當(dāng)時,得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當(dāng)時,,∴,,當(dāng)時,,整理可得,∴是首項為1,公差為1的等差數(shù)列,∴,.(2)由(1)可得,∴,解得,∴最小正整數(shù)的值為35.本題考查了等差中項,考查了等差數(shù)列的定義,考查了與的關(guān)系,考查了裂項相消求和.當(dāng)已知有與的遞推關(guān)系時,常代入進行整理.證明數(shù)列是等差數(shù)列時,一般借助數(shù)列,即后一項與前一項的差為常數(shù).19.(1),(2)證明見解析【解析】
(1)利用首項和公差構(gòu)成方程組,從而求解出的通項公式;由的通項公式求解出的表達式,根據(jù)以及,求解出的通項公式;(2)利用錯位相減法求解出的前項和,根據(jù)不等關(guān)系證明即可.【詳解】(1)設(shè)首項為,公差為.由題意,得,解得,∴,∴,∴當(dāng)時,∴,.當(dāng)時,滿足上式.∴(2),令數(shù)列的前項和為.兩式相減得∴恒成立,得證.本題考查等差數(shù)列、等比數(shù)列的綜合應(yīng)用,難度一般.(1)當(dāng)用求解的通項公式時,一定要注意驗證是否成立;(2)當(dāng)一個數(shù)列符合等差乘以等比的形式,優(yōu)先考慮采用錯位相減法進行求和,同時注意對于錯位的理解.20.(1)適宜(2)(3)(ⅰ)回歸方程可靠(ⅱ)防護措施有效【解析】
(1)根據(jù)散點圖即可判斷出結(jié)果.(2)設(shè),則,求出,再由回歸方程過樣本中心點求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅行社之間合作協(xié)議
- 美蘇技術(shù)合作協(xié)議
- 2025版施工合同放棄及回函流程規(guī)范3篇
- 2025版智能交通管理系統(tǒng)安全生遵守協(xié)議書3篇
- 2025版小額貸款合同簽訂中的合同簽訂中的合同解除權(quán)與條件2篇
- 2025年全球及中國不銹鋼晶圓環(huán)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國閉芯變壓器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國鋁角行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球絲束預(yù)浸料設(shè)備行業(yè)調(diào)研及趨勢分析報告
- 2025版施工現(xiàn)場安全生產(chǎn)管理及應(yīng)急救援服務(wù)合同2篇
- 河南省濮陽市2024-2025學(xué)年高一上學(xué)期1月期末考試語文試題(含答案)
- 割接方案的要點、難點及采取的相應(yīng)措施
- 2025年副護士長競聘演講稿(3篇)
- 外科護理(高職護理專業(yè))PPT完整全套教學(xué)課件
- 超聲科圖像質(zhì)量評價細則及超聲科制度匯編
- 創(chuàng)傷嚴(yán)重程度(ISS)評分表(完整版)
- 中國古代文學(xué)史 馬工程課件(中)24第六編 遼西夏金元文學(xué) 緒論
- 2022版義務(wù)教育(勞動)課程標(biāo)準(zhǔn)(含2022年修訂部分)
- 最新交管12123學(xué)法減分題庫含答案(通用版)
- 碳排放核查員模擬考試題
- 奢侈品管理概論完整版教學(xué)課件全書電子講義(最新)
評論
0/150
提交評論