新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練4.3 利用導(dǎo)數(shù)求極值最值(提升版)(原卷版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練4.3 利用導(dǎo)數(shù)求極值最值(提升版)(原卷版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練4.3 利用導(dǎo)數(shù)求極值最值(提升版)(原卷版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練4.3 利用導(dǎo)數(shù)求極值最值(提升版)(原卷版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練4.3 利用導(dǎo)數(shù)求極值最值(提升版)(原卷版)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

4.3利用導(dǎo)數(shù)求極值最值(精講)(提升版)思維導(dǎo)圖思維導(dǎo)圖考點(diǎn)呈現(xiàn)考點(diǎn)呈現(xiàn)例題剖析例題剖析考點(diǎn)一無參函數(shù)的極值(點(diǎn))【例1】(2022·天津市濱海新區(qū)塘沽第一中學(xué))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的極小值點(diǎn)是(

)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【一隅三反】1.(2022·天津·耀華中學(xué))已知曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率為3,且SKIPIF1<0是SKIPIF1<0的極值點(diǎn),則函數(shù)的另一個(gè)極值點(diǎn)為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.22.(2022·天津·崇化中學(xué))函數(shù)SKIPIF1<0有(

)A.極大值為5,無極小值 B.極小值為SKIPIF1<0,無極大值C.極大值為5,極小值為SKIPIF1<0 D.極大值為5,極小值為SKIPIF1<03.(2022·重慶八中模擬預(yù)測)(多選)設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0是SKIPIF1<0的極小值點(diǎn),以下結(jié)論一定正確的是(

)A.SKIPIF1<0是SKIPIF1<0的最小值點(diǎn)B.SKIPIF1<0是SKIPIF1<0的極大值點(diǎn)C.SKIPIF1<0是SKIPIF1<0的極大值點(diǎn)D.SKIPIF1<0是SKIPIF1<0的極大值點(diǎn)考點(diǎn)二已知極值(點(diǎn))求參數(shù)【例2-1】(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上既有極大值又有極小值,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【例2-2】(2022·陜西)已知函數(shù)SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0的極小值點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【一隅三反】1.(2022·廣東·惠來縣第一中學(xué))若函數(shù)SKIPIF1<0在SKIPIF1<0處有極值,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.a(chǎn)不存在2.(2022·河南)已知函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·江西鷹潭)已知函數(shù)SKIPIF1<0的極大值點(diǎn)SKIPIF1<0,極小值點(diǎn)SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·河南洛陽·三模(理))若函數(shù)SKIPIF1<0在SKIPIF1<0上有且僅有6個(gè)極值點(diǎn),則正整數(shù)SKIPIF1<0的值為(

)A.2 B.3 C.4 D.5考點(diǎn)三無參函數(shù)的最值【例3】(2022·全國·高考真題(文))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的最小值、最大值分別為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【一隅三反】1.(2022·海南華僑中學(xué))已知函數(shù)SKIPIF1<0,下列說法正確的是(

)A.函數(shù)在SKIPIF1<0上遞增 B.函數(shù)無極小值C.函數(shù)只有一個(gè)極大值SKIPIF1<0 D.函數(shù)在SKIPIF1<0上最大值為32.(2022·四川省成都市新都一中)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為______.3.(2022·四川·威遠(yuǎn)中學(xué)校)對(duì)任意SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的最小值為_____.考點(diǎn)四已知最值求參數(shù)【例4-1】(2022·全國·高考真題(理))當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0取得最大值SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【例4-2】(2022·遼寧·大連二十四中模擬預(yù)測)若將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)在區(qū)間SKIPIF1<0上無極值點(diǎn),則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【一隅三反】1.(2022·江西省豐城中學(xué)模擬預(yù)測(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0上有最小值,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國·高三專題練習(xí))已知不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,則實(shí)數(shù)a的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·河南洛陽)若曲線SKIPIF1<0與曲線:SKIPIF1<0=SKIPIF1<0SKIPIF1<0有公切線,則實(shí)數(shù)SKIPIF1<0的最大值為(

)A.SKIPIF1<0+SKIPIF1<0 B.SKIPIF1<0-SKIPIF1<0 C.SKIPIF1<0+SKIPIF1<0 D.SKIPIF1<0SKIPIF1<04(2022·吉林·延邊二中)若函數(shù)SKIPIF1<0最小值為SKIPIF1<0,SKIPIF1<0最小值為SKIPIF1<0,則SKIPIF1<0+SKIPIF1<0=(

)A.-2 B.0 C.2 D.-4考點(diǎn)五最值極值綜合運(yùn)用【例5】(2022·浙江嘉興)已知函數(shù)SKIPIF1<0.(注:SKIPIF1<0是自然對(duì)數(shù)的底數(shù))(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若SKIPIF1<0只有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;(3)若存在SKIPIF1<0,對(duì)與任意的SKIPIF1<0,使得SKIPIF1<0恒成立,求SKIPIF1<0的最小值.【一隅三反】1.(2022·河北·石家莊二中)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(2)若SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在極大值,求a的取值范圍.2.(2022·四川省成都市新都一中)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),若對(duì)任意SKIPIF1<0,SKIPIF1<0恒成立,求b的取值范圍;(2)若SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在極大值,求a的取值范圍.3.(2022·全國·哈師大附中)已知函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).(1)證明:當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在區(qū)SKIPIF1<0內(nèi)存在唯一的極值點(diǎn)SKIPIF1<0,SKIPIF1<0;(2)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,求整數(shù)a的最小值.4.3利用導(dǎo)數(shù)求極值最值(精練)(提升版)題組一題組一無參函數(shù)的極值(點(diǎn))1.(2022·山東·巨野縣實(shí)驗(yàn)中學(xué))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,導(dǎo)函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)的圖像如圖所示,則函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)的極小值有(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2.(2022·天津?qū)嶒?yàn)中學(xué))下列函數(shù)中存在極值點(diǎn)的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·福建省連城縣第一中學(xué))函數(shù)SKIPIF1<0的極值點(diǎn)的個(gè)數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.無數(shù)個(gè)4.(2022·全國·哈師大附中)已知SKIPIF1<0是函數(shù)SKIPIF1<0的一個(gè)極值點(diǎn),則SKIPIF1<0的值是(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·遼寧·鞍山市華育高級(jí)中學(xué))已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖像如圖所示,則下列判斷正確的是(

)A.在區(qū)間SKIPIF1<0上,SKIPIF1<0是增函數(shù) B.在區(qū)間SKIPIF1<0上,SKIPIF1<0是減函數(shù)C.SKIPIF1<0為SKIPIF1<0的極小值點(diǎn) D.2為SKIPIF1<0的極大值點(diǎn)6.(2022·湖北·南漳縣第一中學(xué))函數(shù)SKIPIF1<0的極大值為(

)A.-2 B.2 C.SKIPIF1<0 D.不存在7(2022·天津河北)設(shè)SKIPIF1<0是函數(shù)f(x)的導(dǎo)函數(shù),若函數(shù)f(x)的圖象如圖所示,則下列說法錯(cuò)誤的是(

)A.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0 B.當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0 D.函數(shù)f(x)在SKIPIF1<0處取得極小值題組二題組二已知極值(點(diǎn))求參數(shù)1.(2022·山東濰坊)已知函數(shù)SKIPIF1<0的圖像與直線SKIPIF1<0有3個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·重慶·萬州純陽中學(xué)校)若函數(shù)SKIPIF1<0在SKIPIF1<0上存在唯一極值點(diǎn),則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·四川省成都市新都一中)已知SKIPIF1<0沒有極值,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·湖北)函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)存在極值點(diǎn),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<05.(2022·河南)已知函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·安徽·蒙城第一中學(xué))已知SKIPIF1<0為常數(shù),函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn),其中一個(gè)極值點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07(2022·陜西·長安一中)已知在SKIPIF1<0中,三個(gè)內(nèi)角SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的對(duì)邊分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0無極值點(diǎn),則角B的最大值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2022·四川·綿陽中學(xué)實(shí)驗(yàn)學(xué)校)若函數(shù)SKIPIF1<0在SKIPIF1<0處有極值10,則SKIPIF1<0(

)A.6 B.SKIPIF1<0 C.SKIPIF1<0或15 D.6或SKIPIF1<09.(2022·青?!ご笸ɑ刈逋磷遄灾慰h教學(xué)研究室二模(理))設(shè)函數(shù)SKIPIF1<0,則下列不是函數(shù)SKIPIF1<0極大值點(diǎn)的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2022·全國·高三專題練習(xí))已知t和SKIPIF1<0是函數(shù)SKIPIF1<0的零點(diǎn),且SKIPIF1<0也是函數(shù)SKIPIF1<0的極小值點(diǎn),則SKIPIF1<0的極大值為(

)A.1 B.4 C.SKIPIF1<0 D.SKIPIF1<011.(2022·廣西·高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0在其定義域的一個(gè)子區(qū)間SKIPIF1<0上有極值,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.(2022·安徽·合肥市第八中學(xué))已知函數(shù)SKIPIF1<0在SKIPIF1<0處取極小值,且SKIPIF1<0的極大值為4,則SKIPIF1<0(

)A.-1 B.2 C.-3 D.413.(2022·河北承德)已知SKIPIF1<0是函數(shù)SKIPIF1<0的極值點(diǎn),則SKIPIF1<0的極大值為_____.14.(2022·北京·101中學(xué))設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)極值點(diǎn),若SKIPIF1<0,則實(shí)數(shù)a的取值范圍是______.15.(2022·浙江寧波)已知函數(shù)SKIPIF1<0,若SKIPIF1<0是函數(shù)SKIPIF1<0的唯一極值點(diǎn),則實(shí)數(shù)k的取值范圍是_______.題組三題組三無參函數(shù)的最值1.(2022·海南華僑中學(xué))已知函數(shù)SKIPIF1<0,下列說法正確的是(

)A.函數(shù)在SKIPIF1<0上遞增 B.函數(shù)無極小值C.函數(shù)只有一個(gè)極大值SKIPIF1<0 D.函數(shù)在SKIPIF1<0上最大值為32.(2022·湖北·模擬預(yù)測)SKIPIF1<0,SKIPIF1<0的最小值為___________.3.(2022·江蘇·南京市江寧高級(jí)中學(xué)模擬預(yù)測)若函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)有且只有一個(gè)零點(diǎn),則SKIPIF1<0在SKIPIF1<0上的最大值與最小值的和為_______.4.(2022·全國·高三專題練習(xí))若實(shí)數(shù)a、b、c、d滿足SKIPIF1<0,則SKIPIF1<0的最小值為______.5.(2022·四川省成都市新都一中)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為______.6.(2022·天津?qū)嶒?yàn)中學(xué))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為__________.7.(2022·四川·威遠(yuǎn)中學(xué)校)對(duì)任意SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的最小值為_____.8.(2022·河南開封)已知SKIPIF1<0是奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為________.題組四題組四已知最值求參數(shù)1.(2022·江西萍鄉(xiāng)·三模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,對(duì)任意SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),都有SKIPIF1<0,若存在SKIPIF1<0,使不等式SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·遼寧·鞍山市華育高級(jí)中學(xué))已知SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則當(dāng)SKIPIF1<0取得最小值時(shí),SKIPIF1<0所在區(qū)間是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·河南·模擬預(yù)測(理))已知函數(shù)SKIPIF1<0至多有2個(gè)不同的零點(diǎn),則實(shí)數(shù)a的最大值為(

).A.0 B.1 C.2 D.e4.(2022·遼寧·遼師大附中)設(shè)函數(shù)SKIPIF1<0(n為正整數(shù)),則SKIPIF1<0在[0,1]上的最大值為(

)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·河南安陽)已知函數(shù)SKIPIF1<0,若SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0處取得最大值,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·江西)設(shè)兩個(gè)實(shí)數(shù)a,b滿足:SKIPIF1<0,則正整數(shù)n的最大值為(

).(參考數(shù)據(jù):SKIPIF1<0)A.7 B.8 C.9 D.10題組五題組五最值極值的綜合運(yùn)用1.(2022·浙江·寧波市李惠利中學(xué))(多選)對(duì)于函數(shù)SKIPIF1<0,下列選項(xiàng)正確的是(

)A.函數(shù)SKIPIF1<0極小值為SKIPIF1<0,極大值為SKIPIF1<0B.函數(shù)SKIPIF1<0單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)為SKIPIF1<0C.函數(shù)SKIPIF1<0最小值為為SKIPIF1<0,最大值SKIPIF1<0D.函數(shù)SKIPIF1<0存在兩個(gè)零點(diǎn)1和SKIPIF1<02.(2022·福建泉州)(多選)函數(shù)SKIPIF1<0在SKIPIF1<0處取得極大值,則a的值可以是(

)A.-1 B.0 C.3 D.43.(2022·黑龍江·哈爾濱市第六中學(xué)校)(多選)已知函數(shù)SKIPIF1<0,下列命題正確的是(

)A.若SKIPIF1<0是函數(shù)SKIPIF1<0的極值點(diǎn),則SKIPIF1<0B.若SKIPIF1<0是函數(shù)SKIPIF1<0的極值點(diǎn),則SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0C.若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0D.若SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論