版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.22.各項都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或3.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.194.生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚中國傳統(tǒng)文化,某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為()A. B. C. D.5.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.6.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.7.現(xiàn)有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.8.某歌手大賽進行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網(wǎng)絡平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓的評分情況如下表,場內外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數(shù)為,場內外的觀眾評分的平均數(shù)為,所有嘉賓與場內外的觀眾評分的平均數(shù)為,則下列選項正確的是()A. B. C. D.9.已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.11.已知命題:“關于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是()A. B. C. D.12.在復平面內,復數(shù)z=i對應的點為Z,將向量繞原點O按逆時針方向旋轉,所得向量對應的復數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中隨機取出4個,則取出球的編號互不相同的概率為_______________.14.若,則=____,=___.15.若復數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.16.已知拋物線的焦點為,過點且斜率為1的直線與拋物線交于點,以線段為直徑的圓上存在點,使得以為直徑的圓過點,則實數(shù)的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某工廠,兩條相互獨立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設不合格的產(chǎn)品均可進行返工修復為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回損失元和元.若從兩條生產(chǎn)線上各隨機抽檢件產(chǎn)品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線挽回的損失較多?②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機抽取件進行檢測,結果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.18.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)寫出的極坐標方程與直線的直角坐標方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.20.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.21.(12分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.22.(10分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點,求的求值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
求出函數(shù)的導數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導數(shù)的幾何意義,切線方程的求法,考查計算能力.2.C【解析】分析:解決該題的關鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項之間的關系,從而得到公比所滿足的等量關系式,解方程即可得結果.詳解:根據(jù)題意有,即,因為數(shù)列各項都是正數(shù),所以,而,故選C.點睛:該題應用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結果.3.B【解析】
由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時,要使得a1則ak+1則k=17,故選:B.【點睛】本題考查與遞推數(shù)列相關的方程的整數(shù)解的求法,注意將題設中的遞推關系變形得到新的遞推關系,從而可簡化與數(shù)列相關的方程,本題屬于難題.4.C【解析】
分情況討論,由間接法得到“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開的事件個數(shù),不考慮限制因素,總數(shù)有種,進而得到結果.【詳解】當“數(shù)”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當“數(shù)”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數(shù)有種,故滿足條件的事件的概率為:故答案為:C.【點睛】解排列組合問題要遵循兩個原則:①按元素(或位置)的性質進行分類;②按事情發(fā)生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).5.C【解析】
利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關鍵,屬于基礎題.6.A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎題.7.B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.8.C【解析】
計算出、,進而可得出結論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.【點睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計算,考查計算能力,屬于基礎題.9.C【解析】
根據(jù)直線和平面平行的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質是解決本題的關鍵.10.C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.11.B【解析】命題p:,為,又為真命題的充分不必要條件為,故12.A【解析】
由復數(shù)z求得點Z的坐標,得到向量的坐標,逆時針旋轉,得到向量的坐標,則對應的復數(shù)可求.【詳解】解:∵復數(shù)z=i(i為虛數(shù)單位)在復平面中對應點Z(0,1),
∴=(0,1),將繞原點O逆時針旋轉得到,
設=(a,b),,則,即,
又,解得:,∴,對應復數(shù)為.故選:A.【點睛】本題考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:從編號分別為1,1,3,4,5的5個紅球和5個黑球,從中隨機取出4個,有種不同的結果,由于是隨機取出的,所以每個結果出現(xiàn)的可能性是相等的;設事件為“取出球的編號互不相同”,則事件包含了個基本事件,所以.考點:1.計數(shù)原理;1.古典概型.14.12821【解析】
令,求得的值.利用展開式的通項公式,求得的值.【詳解】令,得.展開式的通項公式為,當時,為,即.【點睛】本小題主要考查二項式展開式的通項公式,考查賦值法求解二項式系數(shù)有關問題,屬于基礎題.15.【解析】
先求得復數(shù),再由復數(shù)模的計算公式即得.【詳解】,,則.故答案為:【點睛】本題考查復數(shù)的四則運算和求復數(shù)的模,是基礎題.16.【解析】
由題意求出以線段AB為直徑的圓E的方程,且點D恒在圓E外,即圓E上存在點,使得,則當與圓E相切時,此時,由此列出不等式,即可求解?!驹斀狻坑深}意可得,直線的方程為,聯(lián)立方程組,可得,設,則,,設,則,,又,所以圓是以為圓心,4為半徑的圓,所以點恒在圓外.圓上存在點,使得以為直徑的圓過點,即圓上存在點,使得,設過點的兩直線分別切圓于點,要滿足題意,則,所以,整理得,解得,故實數(shù)的取值范圍為【點睛】本題主要考查了直線與拋物線位置關系的應用,以及直線與圓的位置關系的應用,其中解答中準確求得圓E的方程,把圓上存在點,使得以為直徑的圓過點,轉化為圓上存在點,使得是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)①生產(chǎn)線上挽回的損失較多.②見解析【解析】
(1)由題意得到關于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項分布的期望公式和數(shù)學期望的性質給出結論即可;②.由題意首先確定X可能的取值,然后求得相應的概率值可得分布列,最后由分布列可得利潤的期望值.【詳解】(1)設從,生產(chǎn)線上各抽檢一件產(chǎn)品,至少有一件合格為事件,設從,生產(chǎn)線上抽到合格品分別為事件,,則,互為獨立事件由已知有,則解得,則的最小值(2)由(1)知,生產(chǎn)線的合格率分別為和,即不合格率分別為和.①設從,生產(chǎn)線上各抽檢件產(chǎn)品,抽到不合格產(chǎn)品件數(shù)分別為,,則有,,所以,生產(chǎn)線上挽回損失的平均數(shù)分別為:,所以生產(chǎn)線上挽回的損失較多.②由已知得的可能取值為,,,用樣本估計總體,則有,,所以的分布列為所以(元)故估算估算該廠產(chǎn)量件時利潤的期望值為(元)【點睛】本題主要考查概率公式的應用,二項分布的性質與方差的求解,離散型隨機變量及其分布列的求解等知識,意在考查學生的轉化能力和計算求解能力.18.(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點睛:本題主要考查正弦定理邊角互化及余弦定理的應用與特殊角的三角函數(shù),屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應用.19.(1),(2)存在,【解析】
(1)先求得曲線的普通方程,利用伸縮變換的知識求得曲線的直角坐標方程,再轉化為極坐標方程.根據(jù)極坐標和直角坐標轉化公式,求得直線的直角坐標方程.(2)求得曲線的圓心和半徑,計算出圓心到直線的距離,結合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標伸長到原來的2倍,得到曲線的直角坐標方程為,其極坐標方程為,直線的直角坐標方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.∴由圖像可知,存在這樣的點,,則,且點到直線的距離,∴,∴.【點睛】本小題主要考查坐標變換,考查直線和圓的位置關系,考查極坐標方程和直角坐標方程相互轉化,考查參數(shù)方程化為普通方程,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.20.(1);(2)最小值為,此時【解析】
(1)消去曲線參數(shù)方程的參數(shù),求得曲線的普通方程.利用極坐標和直角坐標相互轉化公式,求得曲線的直角坐標方程.(2)設出的坐標,結合點到直線的距離公式以及三角函數(shù)最值的求法,求得的最小值及此時點的坐標.【詳解】(1)消去得,曲線的普通方程是:;把,代入得,曲線的直角坐標方程是(2)設,的最小值就是點到直線的最小距離.設在時,,是最小值,此時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《汽車結構認識》課件
- 單位管理制度合并選集【職員管理】十篇
- 單位管理制度范例選集職工管理十篇
- 單位管理制度呈現(xiàn)合集職工管理十篇
- 單位管理制度呈現(xiàn)大合集員工管理
- 《店鋪運營管理》課件
- 《生藥分析1》課程實施大綱
- 某科技園物業(yè)管理方案
- 2024年供電公司安全稽查總結
- 《小升初語法名詞》課件
- 《皮膚病中成藥導引》課件
- 2024-2030年中國除顫儀行業(yè)市場分析報告
- 眼鏡學智慧樹知到答案2024年溫州醫(yī)科大學
- 安利培訓體系介紹
- 推薦-挖掘機檢驗報告精品
- 排洪溝工程設計說明
- 23、PFMEA檢查表
- CSX購倂Conrail之后能夠產(chǎn)生的綜效(synergy)列示
- 煤礦機電事故影響考核管理辦法
- 三段式電流保護課程設計
- 施工電梯基礎(地下室頂板加固圖文并茂)施工方案
評論
0/150
提交評論