版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
許昌市重點(diǎn)中學(xué)2024-2025學(xué)年高考高三數(shù)學(xué)試題第一次模擬試題精選注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)為拋物線上任意一點(diǎn)的平分線與軸交于,則的最大值為A. B. C. D.2.已知函數(shù)的圖像的一條對(duì)稱軸為直線,且,則的最小值為()A. B.0 C. D.3.已知集合A,B=,則A∩B=A. B. C. D.4.已知函數(shù),其中表示不超過(guò)的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)5.已知函數(shù)(,且)在區(qū)間上的值域?yàn)?,則()A. B. C.或 D.或46.記遞增數(shù)列的前項(xiàng)和為.若,,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.7.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.8.已知冪函數(shù)的圖象過(guò)點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.9.的內(nèi)角的對(duì)邊分別為,若,則內(nèi)角()A. B. C. D.10.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題11.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.12.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果拋物線上一點(diǎn)到準(zhǔn)線的距離是6,那么______.14.若函數(shù)為偶函數(shù),則.15.已知四棱錐的底面ABCD是邊長(zhǎng)為2的正方形,且.若四棱錐P-ABCD的五個(gè)頂點(diǎn)在以4為半徑的同一球面上,當(dāng)PA最長(zhǎng)時(shí),則______________;四棱錐P-ABCD的體積為_(kāi)_____________.16.?dāng)?shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,滿足,,且.若任意,成立,則實(shí)數(shù)的取值范圍為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知三點(diǎn)在拋物線上.(Ⅰ)當(dāng)點(diǎn)的坐標(biāo)為時(shí),若直線過(guò)點(diǎn),求此時(shí)直線與直線的斜率之積;(Ⅱ)當(dāng),且時(shí),求面積的最小值.18.(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.19.(12分)(本小題滿分12分)已知橢圓C:x2a2+y(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)A(1,0)的直線與橢圓C交于點(diǎn)M,N,設(shè)P為橢圓上一點(diǎn),且OM+ON=t20.(12分)在極坐標(biāo)系中,已知曲線,.(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點(diǎn),求兩交點(diǎn)間的距離.21.(12分)已知點(diǎn)到拋物線C:y1=1px準(zhǔn)線的距離為1.(Ⅰ)求C的方程及焦點(diǎn)F的坐標(biāo);(Ⅱ)設(shè)點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)Q,過(guò)點(diǎn)Q作不經(jīng)過(guò)點(diǎn)O的直線與C交于兩點(diǎn)A,B,直線PA,PB,分別交x軸于M,N兩點(diǎn),求的值.22.(10分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
求出拋物線的焦點(diǎn)坐標(biāo),利用拋物線的定義,轉(zhuǎn)化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點(diǎn)F(1,0),準(zhǔn)線方程為x=?1,
過(guò)點(diǎn)P作PM垂直于準(zhǔn)線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當(dāng)時(shí),,當(dāng)時(shí),,,綜上:.故選:A.本題主要考查拋物線的定義、性質(zhì)的簡(jiǎn)單應(yīng)用,直線的斜率公式、利用數(shù)形結(jié)合進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.考查學(xué)生的計(jì)算能力,屬于中檔題.2.D【解析】
運(yùn)用輔助角公式,化簡(jiǎn)函數(shù)的解析式,由對(duì)稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對(duì)稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時(shí),的最小值,故選D.本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡(jiǎn)函數(shù)的解析式,合理利用正弦函數(shù)的對(duì)稱性與最值是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題.3.A【解析】
先解A、B集合,再取交集。【詳解】,所以B集合與A集合的交集為,故選A一般地,把不等式組放在數(shù)軸中得出解集。4.C【解析】
根據(jù)表示不超過(guò)的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過(guò)的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C本題考查對(duì)題干的理解,屬于函數(shù)新定義問(wèn)題,可作出圖象分析性質(zhì),屬于較難題.5.C【解析】
對(duì)a進(jìn)行分類(lèi)討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時(shí),,所以,,所以;當(dāng)時(shí),,所以,,所以.綜上,或,故選C.本題主要考查指數(shù)函數(shù)的值域問(wèn)題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象的核心素養(yǎng).6.D【解析】
由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.7.C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫(huà)出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問(wèn)題,屬于基礎(chǔ)題8.A【解析】
根據(jù)題意求得參數(shù),根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),以及對(duì)數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.9.C【解析】
由正弦定理化邊為角,由三角函數(shù)恒等變換可得.【詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.本題考查正弦定理,考查兩角和的正弦公式和誘導(dǎo)公式,掌握正弦定理的邊角互化是解題關(guān)鍵.10.B【解析】
由的單調(diào)性,可判斷p是真命題;分類(lèi)討論打開(kāi)絕對(duì)值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對(duì)于命題q,當(dāng),即時(shí),;當(dāng),即時(shí),,由,得,無(wú)解,因此命題q是假命題.所以為假命題,A錯(cuò)誤;為真命題,B正確;為假命題,C錯(cuò)誤;為真命題,D錯(cuò)誤.故選:B本題考查了命題的邏輯連接詞,考查了學(xué)生邏輯推理,分類(lèi)討論,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11.C【解析】
先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒(méi)獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒(méi)有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒(méi)有獎(jiǎng)的情況有(種),故所求概率為.故選:C.本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.12.B【解析】
由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑危?,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求出拋物線的準(zhǔn)線方程,然后根據(jù)點(diǎn)到準(zhǔn)線的距離為6,列出,直接求出結(jié)果.【詳解】拋物線的準(zhǔn)線方程為,由題意得,解得.∵點(diǎn)在拋物線上,∴,∴,故答案為:.本小題主要考查拋物線的定義,屬于基礎(chǔ)題.14.1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點(diǎn):函數(shù)的奇偶性.【方法點(diǎn)晴】本題考查導(dǎo)函數(shù)的奇偶性以及邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力、特殊與一般思想、數(shù)形結(jié)合思想與轉(zhuǎn)化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉(zhuǎn)化思想,將函數(shù)為偶函數(shù)轉(zhuǎn)化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,取.15.90°【解析】
易得平面PAD,P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),顯然,PA是圓的直徑時(shí),PA最長(zhǎng);將四棱錐補(bǔ)形為長(zhǎng)方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),易知,當(dāng)P、、A三點(diǎn)共線時(shí),PA達(dá)到最長(zhǎng),此時(shí),PA是圓的直徑,則;又,所以平面ABCD,此時(shí)可將四棱錐補(bǔ)形為長(zhǎng)方體,其體對(duì)角線為,底面邊長(zhǎng)為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).本題四棱錐外接球有關(guān)的問(wèn)題,考查學(xué)生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.16.【解析】
當(dāng)時(shí),,可得到,再用累乘法求出,再求出,根據(jù)定義求出,再借助單調(diào)性求解.【詳解】解:當(dāng)時(shí),,則,,當(dāng)時(shí),,,,,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,故答案為:.本題主要考查已知求,累乘法,主要考查計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ);(Ⅱ)16.【解析】
(Ⅰ)設(shè)出直線的方程并代入拋物線方程,利用韋達(dá)定理以及斜率公式,變形可得;(Ⅱ)利用,,的斜率,求得的坐標(biāo),,再用基本不等式求得的最小值,從而可得三角形的面積的最小值.【詳解】解:(Ⅰ)設(shè)直線的方程為.聯(lián)立方程組,得,,故,.所以;(Ⅱ)不妨設(shè)的三個(gè)頂點(diǎn)中的兩個(gè)頂點(diǎn)在軸右側(cè)(包括軸),設(shè),,,的斜率為,又,則,①因?yàn)?,所以②由①②得,,(且)從而?dāng)且僅當(dāng)時(shí)取“”號(hào),從而,所以面積的最小值為.本題考查了直線與拋物線的綜合,屬于中檔題.18.(1)(2)特征值為或.【解析】
(1)先設(shè)矩陣,根據(jù),按照運(yùn)算規(guī)律,即可求出矩陣.(2)令矩陣的特征多項(xiàng)式等于,即可求出矩陣的特征值.【詳解】解:(1)設(shè)矩陣由題意,因?yàn)?所以,即所以,(2)矩陣的特征多項(xiàng)式,令,解得或,所以矩陣的特征值為1或.本題主要考查矩陣的乘法和矩陣的特征值,考查學(xué)生的劃歸與轉(zhuǎn)化能力和運(yùn)算求解能力.19.(1)x24+【解析】試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),先利用離心率、a2=b2+c2、四邊形的面積列出方程,解出a和b的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),討論直線MN的斜率是否存在,當(dāng)直線MN的斜率存在時(shí),直線方程與橢圓方程聯(lián)立,消參,利用韋達(dá)定理,得到x1+x2、x1x試題解析:(1)∵e=22,??∴又S=12×2a×2b=4∴橢圓C的標(biāo)準(zhǔn)方程為x2(2)由題意知,當(dāng)直線MN斜率存在時(shí),設(shè)直線方程為y=k(x-1),M(x聯(lián)立方程x24+因?yàn)橹本€與橢圓交于兩點(diǎn),所以Δ=16k∴x又∵OM∴因?yàn)辄c(diǎn)P在橢圓x24+即2k又∵|OM即|NM|<4化簡(jiǎn)得:13k4-5k2∵t2=1-當(dāng)直線MN的斜率不存在時(shí),M(1,??62∴t∈[-1,??考點(diǎn):橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系.20.(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標(biāo)方程,進(jìn)而可判斷出曲線的形狀,在曲線的方程兩邊同時(shí)乘以得,由可將曲線的方程化為直角坐標(biāo)方程,由此可判斷出曲線的形狀;(2)由直線過(guò)圓的圓心,可得出為圓的一條直徑,進(jìn)而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標(biāo)方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點(diǎn)在直線上,直線過(guò)圓的圓心.因此,是圓的直徑,.本題考查曲線的極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化,同時(shí)也考查了直線截圓所得弦長(zhǎng)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.21.(Ⅰ)C的方程為,焦點(diǎn)F的坐標(biāo)為(1,0);(Ⅱ)1【解析】
(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點(diǎn)F的坐標(biāo);
(Ⅱ)設(shè)點(diǎn)A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物業(yè)管理改善協(xié)議3篇
- 小班音樂(lè)教案錦集10篇
- 雙十一營(yíng)銷(xiāo)活動(dòng)方案大全10篇
- 醫(yī)院護(hù)士演講稿(合集15篇)
- 軍訓(xùn)心得高一范文5篇
- 邀請(qǐng)活動(dòng)的邀請(qǐng)函八篇
- 感恩中學(xué)生演講稿三篇
- 會(huì)計(jì)的實(shí)習(xí)報(bào)告三篇
- 乒乓球比賽的作文400字合集7篇
- 保護(hù)水資源倡議書(shū)15篇
- 奧齒泰-工具盒使用精講講解學(xué)習(xí)課件
- DB32T 4353-2022 房屋建筑和市政基礎(chǔ)設(shè)施工程檔案資料管理規(guī)程
- 航空小鎮(zhèn)主題樂(lè)園項(xiàng)目規(guī)劃設(shè)計(jì)方案
- 保潔冬季防滑防凍工作措施
- 少兒美術(shù)課件-《我的情緒小怪獸》
- 拆除工程原始記錄
- 重視圍透析期慢性腎臟病患者的管理課件
- 預(yù)應(yīng)力鋼絞線張拉伸長(zhǎng)量計(jì)算程序單端(自動(dòng)版)
- 企業(yè)內(nèi)部審計(jì)情況報(bào)表
- 基坑監(jiān)測(cè)課件ppt版(共155頁(yè))
- 露天臺(tái)階爆破設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論