版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第06講雙曲線(xiàn)(精講)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:課前自我評(píng)估測(cè)試第三部分:典型例題剖析題型一:雙曲線(xiàn)的定義及其應(yīng)用題型二:雙曲線(xiàn)的標(biāo)準(zhǔn)方程題型三:雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)角度1:漸近線(xiàn)角度2:離心率題型四:與雙曲線(xiàn)有關(guān)的最值和范圍問(wèn)題第四部分:高考真題感悟第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶知識(shí)點(diǎn)一:雙曲線(xiàn)的定義1、定義:一般地,我們把平面內(nèi)與兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0的距離的差的絕對(duì)值等于非零常數(shù)(小于SKIPIF1<0)的點(diǎn)的軌跡叫做雙曲線(xiàn).這兩個(gè)定點(diǎn)叫做雙曲線(xiàn)的焦點(diǎn),兩焦點(diǎn)間的距離叫做雙曲線(xiàn)的焦距.2、集合語(yǔ)言表達(dá)式雙曲線(xiàn)就是下列點(diǎn)的集合:SKIPIF1<0.3、說(shuō)明若將定義中差的絕對(duì)值中的絕對(duì)值符號(hào)去掉,則點(diǎn)SKIPIF1<0的軌跡為雙曲線(xiàn)的一支,具體是哪一支,取決于SKIPIF1<0與SKIPIF1<0的大小.(1)若SKIPIF1<0,則SKIPIF1<0,點(diǎn)SKIPIF1<0的軌跡是靠近定點(diǎn)SKIPIF1<0的那一支;(2)若SKIPIF1<0,則SKIPIF1<0,點(diǎn)SKIPIF1<0的軌跡是靠近定點(diǎn)SKIPIF1<0的那一支.知識(shí)點(diǎn)二:雙曲線(xiàn)的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì)標(biāo)準(zhǔn)方程SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)圖形性質(zhì)范圍SKIPIF1<0或SKIPIF1<0SKIPIF1<0或SKIPIF1<0對(duì)稱(chēng)性對(duì)稱(chēng)軸:坐標(biāo)軸;對(duì)稱(chēng)中心:原點(diǎn)頂點(diǎn)坐標(biāo)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0漸近線(xiàn)SKIPIF1<0SKIPIF1<0離心率SKIPIF1<0,SKIPIF1<0,SKIPIF1<0間的關(guān)系SKIPIF1<0知識(shí)點(diǎn)三:等軸雙曲線(xiàn)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)當(dāng)SKIPIF1<0時(shí)稱(chēng)雙曲線(xiàn)為等軸雙曲線(xiàn)①SKIPIF1<0;②離心率SKIPIF1<0;③兩漸近線(xiàn)互相垂直,分別為SKIPIF1<0;④等軸雙曲線(xiàn)的方程SKIPIF1<0,SKIPIF1<0;知識(shí)點(diǎn)四:雙曲線(xiàn)與漸近線(xiàn)的關(guān)系1、若雙曲線(xiàn)方程為SKIPIF1<0SKIPIF1<0漸近線(xiàn)方程:SKIPIF1<0SKIPIF1<02、若雙曲線(xiàn)方程為SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)SKIPIF1<0漸近線(xiàn)方程:SKIPIF1<0SKIPIF1<03、若漸近線(xiàn)方程為SKIPIF1<0,則雙曲線(xiàn)方程可設(shè)為SKIPIF1<0,4、若雙曲線(xiàn)與SKIPIF1<0有公共漸近線(xiàn),則雙曲線(xiàn)的方程可設(shè)為SKIPIF1<0(SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸上,SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸上)第二部分:課前自我評(píng)估測(cè)試第二部分:課前自我評(píng)估測(cè)試1.(2022·海南·瓊海市嘉積第三中學(xué)高三階段練習(xí))雙曲線(xiàn)SKIPIF1<0的離心率為SKIPIF1<0,且過(guò)SKIPIF1<0,則雙曲線(xiàn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D解:由雙曲線(xiàn)離心率為SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,所以雙曲線(xiàn)方程為SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0SKIPIF1<0.所以雙曲線(xiàn)的方程為SKIPIF1<0.故選:D2.(2022·四川甘孜·高二期末(文))雙曲線(xiàn)的方程為SKIPIF1<0?,則該雙曲線(xiàn)的離心率為(
)A.SKIPIF1<0? B.SKIPIF1<0?C.SKIPIF1<0? D.SKIPIF1<0?【答案】D由雙曲線(xiàn)方程SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,則雙曲線(xiàn)的離心率為SKIPIF1<0.故選:D.3.(多選)(2022·廣東·佛山市南海區(qū)藝術(shù)高級(jí)中學(xué)模擬預(yù)測(cè))若方程SKIPIF1<0所表示的曲線(xiàn)為SKIPIF1<0,則下面四個(gè)命題中正確的是(
)A.若SKIPIF1<0為橢圓,則SKIPIF1<0 B.若SKIPIF1<0為雙曲線(xiàn),則SKIPIF1<0或SKIPIF1<0C.曲線(xiàn)SKIPIF1<0可能是圓 D.若SKIPIF1<0為橢圓,且長(zhǎng)軸在SKIPIF1<0軸上,則SKIPIF1<0【答案】BC若SKIPIF1<0為橢圓,則SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,故A錯(cuò)誤若SKIPIF1<0為雙曲線(xiàn),則SKIPIF1<0,SKIPIF1<0,故B正確若SKIPIF1<0為圓,則SKIPIF1<0,SKIPIF1<0,故C正確若SKIPIF1<0為橢圓,且長(zhǎng)軸在SKIPIF1<0軸上,則SKIPIF1<0,SKIPIF1<0,故D錯(cuò)誤故選:BC4.(2022·貴州遵義·高二期末(理))過(guò)點(diǎn)SKIPIF1<0且與雙曲線(xiàn):SKIPIF1<0的漸近線(xiàn)垂直的直線(xiàn)方程為_(kāi)_________.【答案】SKIPIF1<0,SKIPIF1<0由雙曲線(xiàn):SKIPIF1<0可得其漸近線(xiàn)方程為SKIPIF1<0,∴過(guò)點(diǎn)SKIPIF1<0且與雙曲線(xiàn):SKIPIF1<0的漸近線(xiàn)垂直的直線(xiàn)方程為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0,SKIPIF1<0.5.(2022·上?!とA東師范大學(xué)附屬東昌中學(xué)高三階段練習(xí))若雙曲線(xiàn)SKIPIF1<0的焦距等于虛軸長(zhǎng)的3倍,則SKIPIF1<0的值為_(kāi)_____.【答案】SKIPIF1<0SKIPIF1<0化為標(biāo)準(zhǔn)方程:SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,則可得:SKIPIF1<0,解得:SKIPIF1<0,故答案為:SKIPIF1<0第三部分:典型例題剖析第三部分:典型例題剖析題型一:雙曲線(xiàn)的定義及其應(yīng)用典型例題例題1.(2022·河南許昌·高二期末(理))已知雙曲線(xiàn)SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,其一條漸近線(xiàn)傾斜角為SKIPIF1<0,若點(diǎn)P在雙曲線(xiàn)上,且SKIPIF1<0,則SKIPIF1<0______.【答案】13由題意,SKIPIF1<0,故SKIPIF1<0,雙曲線(xiàn)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0小于SKIPIF1<0到右頂點(diǎn)的距離,故SKIPIF1<0在雙曲線(xiàn)的左支上,由雙曲線(xiàn)的定義可得SKIPIF1<0,解得SKIPIF1<0故答案為:13例題2.(2022·安徽師范大學(xué)附屬中學(xué)模擬預(yù)測(cè)(文))設(shè)SKIPIF1<0為橢圓SKIPIF1<0和雙曲線(xiàn)SKIPIF1<0的一個(gè)公共點(diǎn),且SKIPIF1<0在第一象限,SKIPIF1<0是SKIPIF1<0的左焦點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A由橢圓SKIPIF1<0方程知其焦點(diǎn)為SKIPIF1<0;由雙曲線(xiàn)SKIPIF1<0方程知其焦點(diǎn)為SKIPIF1<0;SKIPIF1<0橢圓SKIPIF1<0與雙曲線(xiàn)SKIPIF1<0共焦點(diǎn),設(shè)其右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0與雙曲線(xiàn)SKIPIF1<0在第一象限內(nèi)的交點(diǎn),SKIPIF1<0由橢圓和雙曲線(xiàn)定義知:SKIPIF1<0,解得:SKIPIF1<0.故選:A.例題3.(2022·全國(guó)·高二專(zhuān)題練習(xí))雙曲線(xiàn)SKIPIF1<0的左?右焦點(diǎn)分別是SKIPIF1<0?SKIPIF1<0,過(guò)SKIPIF1<0的弦AB與其右支交于SKIPIF1<0?SKIPIF1<0兩點(diǎn),SKIPIF1<0,則SKIPIF1<0的周長(zhǎng)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C由題可得SKIPIF1<0,則SKIPIF1<0的周長(zhǎng)為SKIPIF1<0.故選:C.例題4.(2022·江蘇·高二)已知SKIPIF1<0?SKIPIF1<0是雙曲線(xiàn)SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0是雙曲線(xiàn)SKIPIF1<0上一點(diǎn),且SKIPIF1<0,求SKIPIF1<0的面積.【答案】SKIPIF1<0因?yàn)镾KIPIF1<0?SKIPIF1<0是雙曲線(xiàn)SKIPIF1<0的兩個(gè)焦點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0;設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)辄c(diǎn)M是雙曲線(xiàn)上一點(diǎn),且SKIPIF1<0,所以SKIPIF1<0;在△SKIPIF1<0中,由余弦定理可得:SKIPIF1<0;聯(lián)立上述兩式可得:SKIPIF1<0,所以SKIPIF1<0的面積SKIPIF1<0.同類(lèi)題型歸類(lèi)練1.(2022·湖北·宜城市第一中學(xué)高三階段練習(xí))已知SKIPIF1<0,SKIPIF1<0分別是雙曲線(xiàn)SKIPIF1<0的左、右焦點(diǎn),動(dòng)點(diǎn)SKIPIF1<0在雙曲線(xiàn)SKIPIF1<0的右支上,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B因?yàn)閯?dòng)點(diǎn)SKIPIF1<0在雙曲線(xiàn)SKIPIF1<0的右支上,由雙曲線(xiàn)定義可得:SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0得:SKIPIF1<0.故選:B.2.(2022·陜西·西北工業(yè)大學(xué)附屬中學(xué)高二階段練習(xí)(文))已知雙曲線(xiàn)SKIPIF1<0的左焦點(diǎn)為F,點(diǎn)M在雙曲線(xiàn)C的右支上,SKIPIF1<0,當(dāng)SKIPIF1<0的周長(zhǎng)最小時(shí),SKIPIF1<0的面積為(
)A.2 B.4 C.8 D.12【答案】D解:設(shè)雙曲線(xiàn)SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,由雙曲線(xiàn)的定義知,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,即當(dāng)SKIPIF1<0在SKIPIF1<0即SKIPIF1<0與雙曲線(xiàn)的交點(diǎn)處時(shí),SKIPIF1<0的周長(zhǎng)最小,此時(shí)直線(xiàn)SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的面積為SKIPIF1<0.故選:D.3.(2022·寧夏·銀川一中模擬預(yù)測(cè)(文))已知雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,一條漸近線(xiàn)方程為SKIPIF1<0,若點(diǎn)SKIPIF1<0在雙曲線(xiàn)SKIPIF1<0上,且SKIPIF1<0,則SKIPIF1<0________.【答案】9由雙曲線(xiàn)C的方程可得其漸近線(xiàn)方程為SKIPIF1<0,由已知可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,由雙曲線(xiàn)定義可知SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,又因?yàn)镾KIPIF1<0,故SKIPIF1<0,故答案為:9.4.(2022·河北·衡水市第二中學(xué)高二期中)已知雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0.雙曲線(xiàn)SKIPIF1<0上有一點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______.【答案】1或13##13或1因?yàn)殡p曲線(xiàn)SKIPIF1<0:SKIPIF1<0,所以a=3,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,故答案為:1或13.題型二:雙曲線(xiàn)的標(biāo)準(zhǔn)方程典型例題例題1.(2022·江蘇·高二課時(shí)練習(xí))求適合下列條件的雙曲線(xiàn)的標(biāo)準(zhǔn)方程:(1)頂點(diǎn)在SKIPIF1<0軸上,焦距為10,離心率是SKIPIF1<0;(2)一個(gè)頂點(diǎn)的坐標(biāo)為SKIPIF1<0,一個(gè)焦點(diǎn)的坐標(biāo)為SKIPIF1<0;(3)焦點(diǎn)在SKIPIF1<0軸上,一條漸近線(xiàn)方程為SKIPIF1<0,實(shí)軸長(zhǎng)為12;(4)漸近線(xiàn)方程為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.(1)由題設(shè),SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又頂點(diǎn)在x軸上,故雙曲線(xiàn)的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)由題設(shè),SKIPIF1<0,則SKIPIF1<0,又一個(gè)焦點(diǎn)為SKIPIF1<0,故雙曲線(xiàn)的標(biāo)準(zhǔn)方程為SKIPIF1<0.(3)由題設(shè),SKIPIF1<0,又焦點(diǎn)在y軸上,令雙曲線(xiàn)的標(biāo)準(zhǔn)方程為SKIPIF1<0,又一條漸近線(xiàn)方程為SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以雙曲線(xiàn)的標(biāo)準(zhǔn)方程為SKIPIF1<0.(4)由題設(shè),SKIPIF1<0且焦點(diǎn)在x軸上,令SKIPIF1<0又漸近線(xiàn)方程為SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,故雙曲線(xiàn)的標(biāo)準(zhǔn)方程為SKIPIF1<0例題2.(2022·全國(guó)·高二課時(shí)練習(xí))求適合下列條件的雙曲線(xiàn)的標(biāo)準(zhǔn)方程:(1)SKIPIF1<0,SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸上;(2)焦點(diǎn)為SKIPIF1<0?SKIPIF1<0,經(jīng)過(guò)點(diǎn)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)由題設(shè)知,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.因?yàn)殡p曲線(xiàn)的焦點(diǎn)在x軸上,所以所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為SKIPIF1<0;(2)由已知得SKIPIF1<0,且焦點(diǎn)在y軸上.因?yàn)辄c(diǎn)SKIPIF1<0在雙曲線(xiàn)上,所以點(diǎn)A與兩焦點(diǎn)的距離的差的絕對(duì)值是常數(shù)2a,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.因此,所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程是SKIPIF1<0.同類(lèi)題型歸類(lèi)練1.(2022·全國(guó)·高二課時(shí)練習(xí))已知雙曲線(xiàn)的焦點(diǎn)與橢圓SKIPIF1<0的左、右頂點(diǎn)相同,且經(jīng)過(guò)橢圓的右焦點(diǎn),求該雙曲線(xiàn)的方程.【答案】SKIPIF1<0解:橢圓SKIPIF1<0的左頂點(diǎn)為SKIPIF1<0,右頂點(diǎn)為SKIPIF1<0,右焦點(diǎn)為SKIPIF1<0,所以雙曲線(xiàn)中SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以雙曲線(xiàn)方程為SKIPIF1<0;2.(2022·全國(guó)·高二課時(shí)練習(xí))求適合下列條件的雙曲線(xiàn)的標(biāo)準(zhǔn)方程:(1)焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,且雙曲線(xiàn)上的一點(diǎn)到兩個(gè)焦點(diǎn)距離之差為2;(2)焦點(diǎn)在y軸上,焦距為10,且經(jīng)過(guò)點(diǎn)SKIPIF1<0;(3)經(jīng)過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.(1)因?yàn)殡p曲線(xiàn)的焦點(diǎn)在SKIPIF1<0軸上,故可設(shè)方程為:SKIPIF1<0,又焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,故可得SKIPIF1<0,又雙曲線(xiàn)上的一點(diǎn)到兩個(gè)焦點(diǎn)距離之差為2,即SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0.故雙曲線(xiàn)方程為:SKIPIF1<0.(2)因?yàn)殡p曲線(xiàn)焦點(diǎn)在SKIPIF1<0軸上,故可設(shè)雙曲線(xiàn)方程為SKIPIF1<0,又其焦距為10,故可得SKIPIF1<0;又該雙曲線(xiàn)過(guò)點(diǎn)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,故雙曲線(xiàn)方程為:SKIPIF1<0.(3)不妨設(shè)雙曲線(xiàn)方程為:SKIPIF1<0,因其過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0,故可得SKIPIF1<0,聯(lián)立方程組可得:SKIPIF1<0,故所求雙曲線(xiàn)方程為:SKIPIF1<0.題型三:雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì)角度1:漸近線(xiàn)典型例題例題1.(2022·四川·威遠(yuǎn)中學(xué)校高二階段練習(xí)(文))設(shè)雙曲線(xiàn)SKIPIF1<0的虛軸長(zhǎng)為2,焦距為SKIPIF1<0,則雙曲線(xiàn)的漸近線(xiàn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:依題意SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以雙曲線(xiàn)方程為SKIPIF1<0,所以雙曲線(xiàn)的漸近線(xiàn)方程為SKIPIF1<0;故選:C例題2.(2022·天津市第一中學(xué)濱海學(xué)校高二開(kāi)學(xué)考試)雙曲線(xiàn)SKIPIF1<0的離心率SKIPIF1<0,則其漸近線(xiàn)方程為_(kāi)_____.【答案】SKIPIF1<0或SKIPIF1<0由題意得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,此時(shí)雙曲線(xiàn)方程為:SKIPIF1<0漸近線(xiàn)方程為:SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,此時(shí)雙曲線(xiàn)方程為:SKIPIF1<0,漸近線(xiàn)方程為:SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0同類(lèi)題型歸類(lèi)練1.(2022·全國(guó)·高三專(zhuān)題練習(xí)(文))已知雙曲線(xiàn)SKIPIF1<0的離心率為SKIPIF1<0,則雙曲線(xiàn)E的兩條漸近線(xiàn)的夾角為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】B【詳解】當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,則雙曲線(xiàn)SKIPIF1<0此時(shí)漸近線(xiàn)的斜率為SKIPIF1<0,所以漸近線(xiàn)的傾斜角為SKIPIF1<0和SKIPIF1<0,所以雙曲線(xiàn)E的兩條漸近線(xiàn)的夾角為SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,則雙曲線(xiàn)SKIPIF1<0此時(shí)漸近線(xiàn)的斜率為SKIPIF1<0,所以漸近線(xiàn)的傾斜角為SKIPIF1<0和SKIPIF1<0,所以雙曲線(xiàn)E的兩條漸近線(xiàn)的夾角為SKIPIF1<0;故選:B.2.(2022·北京·高三專(zhuān)題練習(xí))已知雙曲線(xiàn)SKIPIF1<0的一個(gè)焦點(diǎn)為SKIPIF1<0,則雙曲線(xiàn)SKIPIF1<0的一條漸近線(xiàn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A根據(jù)題意,SKIPIF1<0,故可得SKIPIF1<0,則SKIPIF1<0,故雙曲線(xiàn)的漸近線(xiàn)方程為SKIPIF1<0,故SKIPIF1<0是其中一條漸近線(xiàn).故選:A.3.(2022·上海理工大學(xué)附屬中學(xué)高二期中)雙曲線(xiàn)SKIPIF1<0的兩條漸近線(xiàn)的夾角為_(kāi)_____.【答案】SKIPIF1<0##SKIPIF1<0因?yàn)殡p曲線(xiàn)SKIPIF1<0,則SKIPIF1<0,所以漸近線(xiàn)方程為SKIPIF1<0,又直線(xiàn)SKIPIF1<0的傾斜角為SKIPIF1<0,直線(xiàn)SKIPIF1<0的傾斜角為SKIPIF1<0,所以?xún)蓷l漸近線(xiàn)的夾角為SKIPIF1<0.故答案為:SKIPIF1<0角度2:離心率典型例題例題1.(2022·江蘇南通·高二期中)若SKIPIF1<0是1和4的等比中項(xiàng),則曲線(xiàn)SKIPIF1<0的離心率為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】Am是1和4的等比中項(xiàng),所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),曲線(xiàn)SKIPIF1<0化為SKIPIF1<0是焦點(diǎn)在SKIPIF1<0軸上的橢圓,離心率為:SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),曲線(xiàn)SKIPIF1<0化為SKIPIF1<0是焦點(diǎn)在SKIPIF1<0軸上的雙曲線(xiàn),離心率為:SKIPIF1<0.故選:A.例題2.(2022·四川省瀘縣第二中學(xué)模擬預(yù)測(cè)(理))已知SKIPIF1<0為雙曲線(xiàn)SKIPIF1<0的左、右焦點(diǎn),以線(xiàn)段SKIPIF1<0為直徑的圓與雙曲線(xiàn)SKIPIF1<0的右支交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0為等邊三角形,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】DSKIPIF1<0雙曲線(xiàn)SKIPIF1<0與以SKIPIF1<0為直徑的圓均關(guān)于SKIPIF1<0軸對(duì)稱(chēng),SKIPIF1<0為等邊三角形,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;由雙曲線(xiàn)定義知:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0雙曲線(xiàn)離心率SKIPIF1<0.故選:D例題3.(2022·山東泰安·三模)已知雙曲線(xiàn)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的右焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0為雙曲線(xiàn)虛軸的上端點(diǎn),SKIPIF1<0為雙曲線(xiàn)的左頂點(diǎn),若SKIPIF1<0,則雙曲線(xiàn)的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由已知雙曲線(xiàn)SKIPIF1<0的右焦點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,虛軸的上端點(diǎn)B的坐標(biāo)為SKIPIF1<0,左頂點(diǎn)A的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以雙曲線(xiàn)的離心率SKIPIF1<0,故選:D.例題4.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0(SKIPIF1<0),以SKIPIF1<0的焦點(diǎn)為圓心,3為半徑的圓與SKIPIF1<0的漸近線(xiàn)相交,則雙曲線(xiàn)SKIPIF1<0的離心率的取值范圍是________________.【答案】SKIPIF1<0雙曲線(xiàn)C的漸近線(xiàn)方程為SKIPIF1<0,右焦點(diǎn)SKIPIF1<0,∵漸近線(xiàn)與圓相交,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,可得SKIPIF1<0,∴雙曲線(xiàn)C的離心率為:SKIPIF1<0,且SKIPIF1<0.∴SKIPIF1<0.故答案為:SKIPIF1<0同類(lèi)題型歸類(lèi)練1.(2022·江蘇連云港·模擬預(yù)測(cè))已知雙曲線(xiàn)SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,一條漸近線(xiàn)被圓SKIPIF1<0截得的弦長(zhǎng)為SKIPIF1<0,則雙曲線(xiàn)SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A雙曲線(xiàn)的一條漸近線(xiàn)為SKIPIF1<0,即SKIPIF1<0過(guò)F作漸近線(xiàn)的垂線(xiàn),垂足為B則右焦點(diǎn)SKIPIF1<0到漸近線(xiàn)的距離SKIPIF1<0由題可知SKIPIF1<0由勾股定理得,SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,得SKIPIF1<0故選:A2.(2022·河南商丘·三模(理))已知雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,且SKIPIF1<0的實(shí)軸長(zhǎng)大于SKIPIF1<0,則SKIPIF1<0的離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由題意可知,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0故選:D3.(2022·四川省內(nèi)江市第六中學(xué)高二階段練習(xí)(文))已知SKIPIF1<0,SKIPIF1<0是雙曲線(xiàn)SKIPIF1<0的左?右焦點(diǎn),過(guò)SKIPIF1<0作斜率為SKIPIF1<0的直線(xiàn)SKIPIF1<0,SKIPIF1<0分別交SKIPIF1<0軸和雙曲線(xiàn)右支于點(diǎn)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的中點(diǎn),由于O為SKIPIF1<0的中點(diǎn),故SKIPIF1<0,故SKIPIF1<0軸,將SKIPIF1<0代入SKIPIF1<0中得:SKIPIF1<0,故SKIPIF1<0,因?yàn)橹本€(xiàn)SKIPIF1<0的斜率為SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0(負(fù)值舍去),故SKIPIF1<0,故選:D4.(2022·四川雅安·三模(文))已知雙曲線(xiàn)SKIPIF1<0的右焦點(diǎn)為F,若過(guò)點(diǎn)F且傾斜角為SKIPIF1<0的直線(xiàn)與雙曲線(xiàn)的右支有且只有一個(gè)交點(diǎn),則此雙曲線(xiàn)離心率的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由題可得漸近線(xiàn)SKIPIF1<0的斜率滿(mǎn)足SKIPIF1<0,所以離心率SKIPIF1<0.故選:D.5.(2022·廣西·昭平中學(xué)高二階段練習(xí)(理))已知雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0軸的垂線(xiàn)與雙曲線(xiàn)交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且SKIPIF1<0,則雙曲線(xiàn)SKIPIF1<0的離心率的取值范圍是__________.【答案】SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得:SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,不等式兩邊同除以SKIPIF1<0得:SKIPIF1<0,解得:SKIPIF1<0故答案為:SKIPIF1<0題型四:與雙曲線(xiàn)有關(guān)的最值和范圍問(wèn)題典型例題例題1.(2022·全國(guó)·模擬預(yù)測(cè)(文))已知點(diǎn)SKIPIF1<0為雙曲線(xiàn)SKIPIF1<0的右焦點(diǎn),過(guò)SKIPIF1<0作雙曲線(xiàn)的一條漸近線(xiàn)的垂線(xiàn),垂足為SKIPIF1<0.若SKIPIF1<0(點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn))的面積為4,雙曲線(xiàn)的離心率SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B取雙曲線(xiàn)的一條漸近線(xiàn)為SKIPIF1<0,即SKIPIF1<0.則SKIPIF1<0到漸近線(xiàn)的距離即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,易得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:B.例題2.(2022·全國(guó)·高二專(zhuān)題練習(xí))直線(xiàn)SKIPIF1<0與雙曲線(xiàn)SKIPIF1<0沒(méi)有交點(diǎn),則SKIPIF1<0的取值范圍為_(kāi)____.【答案】SKIPIF1<0由題意,雙曲線(xiàn)SKIPIF1<0的漸近線(xiàn)方程為:SKIPIF1<0,因?yàn)橹本€(xiàn)SKIPIF1<0過(guò)原點(diǎn)且與雙曲線(xiàn)SKIPIF1<0沒(méi)有交點(diǎn),故需滿(mǎn)足SKIPIF1<0,故答案為:SKIPIF1<0例題3.(2022·全國(guó)·高二專(zhuān)題練習(xí))已知SKIPIF1<0是雙曲線(xiàn)SKIPIF1<0的左右焦點(diǎn),以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓與雙曲線(xiàn)的一條漸近線(xiàn)交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則雙曲線(xiàn)的離心率的取值范圍是______.【答案】SKIPIF1<0SKIPIF1<0,SKIPIF1<0是雙曲線(xiàn)SKIPIF1<0的左右焦點(diǎn),以SKIPIF1<0圓心,SKIPIF1<0為半徑的圓與雙曲線(xiàn)的一條漸近線(xiàn)SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則焦點(diǎn)到漸近線(xiàn)的距離:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,即:SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以雙曲線(xiàn)的離心率的取值范圍是:SKIPIF1<0.故答案為:SKIPIF1<0.同類(lèi)題型歸類(lèi)練1.(2022·安徽滁州·高二期末)已知雙曲線(xiàn)SKIPIF1<0與雙曲線(xiàn)SKIPIF1<0有相同的漸近線(xiàn),過(guò)雙曲線(xiàn)SKIPIF1<0右焦點(diǎn)SKIPIF1<0的直線(xiàn)SKIPIF1<0與雙曲線(xiàn)SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),弦SKIPIF1<0的中點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0是雙曲線(xiàn)SKIPIF1<0右支上的動(dòng)點(diǎn),點(diǎn)SKIPIF1<0是以點(diǎn)SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上的動(dòng)點(diǎn),點(diǎn)SKIPIF1<0是圓SKIPIF1<0上的動(dòng)點(diǎn),則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由雙曲線(xiàn)SKIPIF1<0知漸近線(xiàn)方程為SKIPIF1<0,又雙曲線(xiàn)SKIPIF1<0與雙曲線(xiàn)SKIPIF1<0有相同的漸近線(xiàn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0雙曲線(xiàn)方程為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又弦SKIPIF1<0的中點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以雙曲線(xiàn)的方程為SKIPIF1<0,由圓SKIPIF1<0的方程可得SKIPIF1<0,圓心為SKIPIF1<0,半徑為SKIPIF1<0,SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線(xiàn)時(shí)取等號(hào).故選:D.2.(2022·全國(guó)·高二專(zhuān)題練習(xí))設(shè)雙曲線(xiàn)SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過(guò)SKIPIF1<0的直線(xiàn)SKIPIF1<0交雙曲線(xiàn)左支于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則SKIPIF1<0的最小值為_(kāi)_____.【答案】22根據(jù)雙曲線(xiàn)SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,由雙曲線(xiàn)的定義可得:SKIPIF1<0①,SKIPIF1<0②,①+②可得:SKIPIF1<0,由于過(guò)雙曲線(xiàn)的左焦點(diǎn)SKIPIF1<0的直線(xiàn)交雙曲線(xiàn)的左支于SKIPIF1<0,SKIPIF1<0兩點(diǎn),可得SKIPIF1<0,即有SKIPIF1<0.則SKIPIF1<0,當(dāng)SKIPIF1<0是雙曲線(xiàn)的通徑時(shí)SKIPIF1<0最小,故SKIPIF1<0.故答案為:223.(2022·河南洛陽(yáng)·模擬預(yù)測(cè)(理))已知F是橢圓SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的右焦點(diǎn),A為橢圓SKIPIF1<0的下頂點(diǎn),雙曲線(xiàn)SKIPIF1<0:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)與橢圓SKIPIF1<0共焦點(diǎn),若直線(xiàn)SKIPIF1<0與雙曲線(xiàn)SKIPIF1<0的一條漸近線(xiàn)平行,SKIPIF1<0,SKIPIF1<0的離心率分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_____.【答案】SKIPIF1<0解:設(shè)SKIPIF1<0的半焦距為c(SKIPIF1<0),則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又直線(xiàn)SKIPIF1<0與SKIPIF1<0的一條漸近線(xiàn)平行,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,即SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<04.(2022·河南·南陽(yáng)中學(xué)三模(文))已知雙曲線(xiàn)SKIPIF1<0的一條漸近線(xiàn)方程為SKIPIF1<0,左焦點(diǎn)為SKIPIF1<0,點(diǎn)P在雙曲線(xiàn)右支上運(yùn)動(dòng),點(diǎn)Q在圓SKIPIF1<0上運(yùn)動(dòng),則SKIPIF1<0的最小值為_(kāi)__________.【答案】8由雙曲線(xiàn)SKIPIF1<0的一條漸近線(xiàn)方程為SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0,雙曲線(xiàn)的左焦點(diǎn)坐標(biāo)SKIPIF1<0,右焦點(diǎn)坐標(biāo)為SKIPIF1<0,由雙曲線(xiàn)的定義,知SKIPIF1<0,即SKIPIF1<0,由圓SKIPIF1<0可得圓心SKIPIF1<0,半徑為SKIPIF1<0,SKIPIF1<0,問(wèn)題轉(zhuǎn)化為求點(diǎn)SKIPIF1<0到圓SKIPIF1<0上的最小值,即SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.第四部分:高考真題感悟第四部分:高考真題感悟1.(2022·天津·高考真題)SKIPIF1<0、SKIPIF1<0是雙曲線(xiàn)SKIPIF1<0的兩個(gè)焦點(diǎn),拋物線(xiàn)SKIPIF1<0的準(zhǔn)線(xiàn)SKIPIF1<0過(guò)雙曲線(xiàn)的焦點(diǎn)SKIPIF1<0,準(zhǔn)線(xiàn)與漸近線(xiàn)交于點(diǎn)SKIPIF1<0,SKIPIF1<0,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C拋物線(xiàn)SKIPIF1<0的準(zhǔn)線(xiàn)方程為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0,不妨設(shè)點(diǎn)SKIPIF1<0為第二象限內(nèi)的點(diǎn),聯(lián)立SKIPIF1<0,可得SKIPIF1<0,即點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0,則SKIPIF1<0為等腰直角三角形,且SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0,因此,雙曲線(xiàn)的標(biāo)準(zhǔn)方程為SKIPIF1<0.故選:C.2.(多選)(2022·全國(guó)·高考真題(理))雙曲線(xiàn)C的兩個(gè)焦點(diǎn)為SKIPIF1<0,以C的實(shí)軸為直徑的圓記為D,過(guò)SKIPIF1<0作D的切線(xiàn)與C交于M,N兩點(diǎn),且SKIPIF1<0,則C的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高強(qiáng)4號(hào)玻璃纖維合作協(xié)議書(shū)
- 2025年汽配壓鑄產(chǎn)品合作協(xié)議書(shū)
- 部編版四年級(jí)上冊(cè)語(yǔ)文第五單元《交流平臺(tái)初試身手》教案及教學(xué)反思
- 八年級(jí)下冊(cè)英語(yǔ)期中考試試卷分析卷面分析及反思
- 2025年中班幼兒教學(xué)總結(jié)范例(二篇)
- 2025年五年級(jí)語(yǔ)文教學(xué)工作總結(jié)例文(2篇)
- 2025年個(gè)人租房合同協(xié)議合同范文(2篇)
- 2025年五年級(jí)語(yǔ)文教學(xué)工作總結(jié)參考(2篇)
- 2025年個(gè)人投資理財(cái)委托合同(4篇)
- 2025年二年級(jí)下冊(cè)英語(yǔ)教學(xué)工作總結(jié)模版(2篇)
- 山東省食用油(植物油)生產(chǎn)企業(yè)名錄496家
- GB∕T 33047.1-2016 塑料 聚合物熱重法(TG) 第1部分:通則
- 電力業(yè)務(wù)許可證豁免證明
- 特發(fā)性肺纖維化IPF
- FIDIC國(guó)際合同條款中英文對(duì)照.doc
- 建筑工程資料歸檔立卷分類(lèi)表(全)
- 個(gè)人勞動(dòng)仲裁申請(qǐng)書(shū)
- 國(guó)籍狀況聲明書(shū)
- 溢流堰穩(wěn)定計(jì)算
- 馬曉宏_《法語(yǔ)》_第一冊(cè)復(fù)習(xí)(課堂PPT)
- 道路環(huán)衛(wèi)清掃保潔項(xiàng)目應(yīng)急處置預(yù)案
評(píng)論
0/150
提交評(píng)論