




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第09講立體幾何與空間向量章節(jié)總結(jié)(精講)第一部分:典型例題講解題型一:空間位置關(guān)系證明的傳統(tǒng)法與向量法角度1:用傳統(tǒng)法證明空間的平行和垂直關(guān)系角度2:利用向量證明空間的平行和垂直關(guān)系題型二:空間角的向量求法角度1:用傳統(tǒng)法求異面直線所成角角度2:用向量法求異面直線所成角角度3:用向量法解決線面角的問題(定值+探索性問題(最值,求參數(shù)))角度4:用向量法解決二面角的問題(定值+探索性問題(最值,求參數(shù)))題型三:距離問題角度1:點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離角度2:點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離(等體積法)角度3:點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離(向量法)題型四:立體幾何折疊問題第二部分:高考真題感悟第一部分:典型例題剖析第一部分:典型例題剖析題型一:空間位置關(guān)系證明的傳統(tǒng)法與向量法角度1:用傳統(tǒng)法證明空間的平行和垂直關(guān)系典型例題例題1.(2022·四川成都·高一期末(文))如圖,四邊形ABCD為長方形,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0的中點(diǎn).設(shè)平面SKIPIF1<0平面SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)證明:SKIPIF1<0.例題2.(2022·遼寧葫蘆島·高一期末)如圖,在四面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0,且直線SKIPIF1<0面SKIPIF1<0.(1)直線SKIPIF1<0直線SKIPIF1<0;(2)平面SKIPIF1<0平面SKIPIF1<0.例題3.(2022·福建·廈門市湖濱中學(xué)高一期中)如圖,在正方體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求證:平面SKIPIF1<0平面SKIPIF1<0.例題4.(2022·甘肅酒泉·高二期末(文))如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0是邊長為2的正三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是線段SKIPIF1<0,SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求證:平面SKIPIF1<0平面SKIPIF1<0.角度2:利用向量證明空間的平行和垂直關(guān)系典型例題例題1.(2022·全國·高二專題練習(xí))如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)證明:平面SKIPIF1<0平面SKIPIF1<0.例題2.(2022·全國·高二課時(shí)練習(xí))如圖所示,在直四棱柱SKIPIF1<0中,底面SKIPIF1<0為等腰梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn).求證:(1)直線SKIPIF1<0平面SKIPIF1<0;(2)平面SKIPIF1<0平面SKIPIF1<0.例題3.(2022·全國·高二專題練習(xí))如圖,四棱錐SKIPIF1<0中,SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn).求證:(1)SKIPIF1<0;(2)SKIPIF1<0平面SKIPIF1<0.例題4.(2022·全國·高三專題練習(xí))已知正方體SKIPIF1<0中,SKIPIF1<0為棱SKIPIF1<0上的動(dòng)點(diǎn).(1)求證:SKIPIF1<0;(2)若平面SKIPIF1<0平面SKIPIF1<0,試確定SKIPIF1<0點(diǎn)的位置.題型二:空間角的向量求法角度1:用傳統(tǒng)法求異面直線所成角典型例題例題1.(2022·重慶·西南大學(xué)附中高一期末)正四面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0和SKIPIF1<0的中點(diǎn),則異面直線SKIPIF1<0和SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題2.(2022·福建莆田·高二期末)若正六棱柱SKIPIF1<0底面邊長為1,高為SKIPIF1<0,則直線SKIPIF1<0和SKIPIF1<0所成的角大小為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題3.(2022·河北邯鄲·高一期末)如圖,在圓臺(tái)SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題4.(2022·云南·麗江市教育科學(xué)研究所高二期末)如圖,SKIPIF1<0是正方體的一個(gè)“直角尖”SKIPIF1<0(SKIPIF1<0兩兩垂直且相等)棱SKIPIF1<0的中點(diǎn),SKIPIF1<0是SKIPIF1<0中點(diǎn),SKIPIF1<0是SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),連接SKIPIF1<0,則當(dāng)SKIPIF1<0與SKIPIF1<0所成角為最小時(shí),SKIPIF1<0_________.角度2:用向量法求異面直線所成角典型例題例題1.(2022·山東德州·高一期末)已知SKIPIF1<0?SKIPIF1<0?SKIPIF1<0?SKIPIF1<0分別是正方體SKIPIF1<0,邊SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為___________.例題2.(2022·河南省蘭考縣第一高級(jí)中學(xué)模擬預(yù)測(理))已知三棱柱SKIPIF1<0的底面是邊長為2的等邊三角形,側(cè)棱長為2,SKIPIF1<0為SKIPIF1<0的中點(diǎn),若SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為______.角度3:用向量法解決線面角的問題(定值+探索性問題(最值,求參數(shù)))典型例題例題1.(2022·全國·高二單元測試)如圖,四棱錐SKIPIF1<0中,底面SKIPIF1<0為平行四邊形,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若二面角SKIPIF1<0為SKIPIF1<0,則SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為__________.例題2.(2022·黑龍江·大慶實(shí)驗(yàn)中學(xué)高一期末)如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0為菱形,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0.(1)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,SKIPIF1<0,求證:SKIPIF1<0平面SKIPIF1<0;(2)在(1)的條件下,若SKIPIF1<0,求直線SKIPIF1<0和平面SKIPIF1<0所成角的余弦值.例題3.(2022·天津一中高一期末)如圖,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0且SKIPIF1<0.SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0的夾角的正弦值;(3)若點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且直線SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0,求線段SKIPIF1<0的長.例題4.(2022·湖北·鄂州市教學(xué)研究室高二期末)蓮花山位于鄂州市洋瀾湖畔.蓮花山,山連九峰,狀若金色蓮初開,獨(dú)展靈秀,故而得名.這里三面環(huán)湖,通匯長江,山巒疊翠,煙波浩渺.旅游區(qū)管委會(huì)計(jì)劃在山上建設(shè)別致涼亭供游客歇腳,如圖①為該涼亭的實(shí)景效果圖,圖②為設(shè)計(jì)圖,該涼亭的支撐柱高為3SKIPIF1<0m,頂部為底面邊長為2的正六棱錐,且側(cè)面與底面所成的角都是SKIPIF1<0.(1)求該涼亭及其內(nèi)部所占空間的大?。?2)在直線SKIPIF1<0上是否存在點(diǎn)SKIPIF1<0,使得直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0?若存在,請(qǐng)確定點(diǎn)SKIPIF1<0的位置;若不存在,請(qǐng)說明理由.角度4:用向量法解決二面角的問題(定值+探索性問題(最值,求參數(shù)))典型例題例題1.(2022·吉林·長春市實(shí)驗(yàn)中學(xué)高一期末)如圖在三棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0.(1)求證:平面SKIPIF1<0平面SKIPIF1<0(2)若SKIPIF1<0為SKIPIF1<0中點(diǎn),求平面SKIPIF1<0與平面SKIPIF1<0所成銳二面角的余弦值.例題2.(2022·四川雅安·高二期末(理))如圖(一)四邊形SKIPIF1<0是等腰梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0點(diǎn)作SKIPIF1<0,垂足為SKIPIF1<0點(diǎn),將SKIPIF1<0沿SKIPIF1<0折到SKIPIF1<0位置如圖(二),且SKIPIF1<0.(1)證明:平面SKIPIF1<0平面EBCD;(2)已知點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<0,求二面角SKIPIF1<0的余弦值.例題3.(2022·全國·高三專題練習(xí))四棱雉SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,底面SKIPIF1<0是等腰梯形,且SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上.(1)當(dāng)SKIPIF1<0是棱SKIPIF1<0的中點(diǎn)時(shí),求證:SKIPIF1<0平面SKIPIF1<0;(2)當(dāng)直線SKIPIF1<0與平面SKIPIF1<0所成角SKIPIF1<0最大時(shí),求二面角SKIPIF1<0的大小.例題4.(2022·江蘇徐州·高二期末)如圖,已知SKIPIF1<0垂直于梯形SKIPIF1<0所在的平面,矩形SKIPIF1<0的對(duì)角線交于點(diǎn)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的余弦值;(3)在線段SKIPIF1<0上是否存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0與平面SKIPIF1<0所成角的大小為SKIPIF1<0?若存在,求出SKIPIF1<0的長;若不存在,說明理由.題型三:距離問題角度1:點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離典型例題例題1.(2022·湖南益陽·高二期末)在棱長為1的正方體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0例題2.(2022·北京·二模)如圖,已知正方體SKIPIF1<0的棱長為1,則線段SKIPIF1<0上的動(dòng)點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最小值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0角度2:點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離(等體積法)典型例題例題1.(2022·四川廣安·模擬預(yù)測(文))如圖,四棱錐SKIPIF1<0中,底面SKIPIF1<0為直角梯形,其中SKIPIF1<0,SKIPIF1<0,面SKIPIF1<0面SKIPIF1<0,且SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上.(1)若SKIPIF1<0,求證:SKIPIF1<0平面SKIPIF1<0.(2)當(dāng)SKIPIF1<0平面SKIPIF1<0時(shí),求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.例題2.(2022·云南保山·高一期末)如圖,在四棱錐SKIPIF1<0,四邊形SKIPIF1<0正方形,SKIPIF1<0平面SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.角度3:點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離(向量法)典型例題例題1.(2022·江蘇·淮安市淮安區(qū)教師發(fā)展中心學(xué)科研訓(xùn)處高二期中)將邊長為SKIPIF1<0的正方形SKIPIF1<0沿對(duì)角線SKIPIF1<0折成直二面角,則點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為______.例題2.(2022·江蘇·南京市第一中學(xué)高二階段練習(xí))如圖,四棱錐SKIPIF1<0的底面是正方形,SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),若SKIPIF1<0,則點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為___________.例題3.(2022·全國·高二單元測試)在如圖所示的幾何體中,四邊形SKIPIF1<0為矩形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為棱SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值;(3)求點(diǎn)SKIPIF1<0到平面SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/IEC/IEEE 8802-15-9:2024 EN Telecommunications and information exchange between systems - Local and metropolitan area networks specific requirements - Part 15-9: Transpor
- 電力施工承包合同(5篇)
- 口罩銷售的合同(6篇)
- 房地產(chǎn)項(xiàng)目開發(fā)委托代理合同
- 文化旅游產(chǎn)業(yè)推廣與合作經(jīng)營合同
- 房產(chǎn)收購合作協(xié)議書
- 書面貨物運(yùn)輸合同
- 互聯(lián)網(wǎng)項(xiàng)目合作協(xié)議
- 可再生能源發(fā)電項(xiàng)目合作開發(fā)協(xié)議
- 制式裝修合同
- 中國氫內(nèi)燃機(jī)行業(yè)發(fā)展環(huán)境、市場運(yùn)行格局及前景研究報(bào)告-智研咨詢(2024版)
- 開學(xué)季初三沖刺中考開學(xué)第一課為夢想加油課件
- 2025年四川綿陽科技城新區(qū)投資控股集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 2025年人教版英語五年級(jí)下冊(cè)教學(xué)進(jìn)度安排表
- 學(xué)校食堂餐廳管理者食堂安全考試題附答案
- 2025延長石油(集團(tuán))限責(zé)任公司社會(huì)招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 病原微生物安全
- 玻璃電動(dòng)平移門施工方案
- 2.1大都市的輻射功能-以我國上海為例(第一課時(shí))課件高中地理湘教版(2019)選擇性必修2+
- 長鑫存儲(chǔ)校招在線測評(píng)題庫
- 2023年智能網(wǎng)聯(lián)汽車產(chǎn)業(yè)洞察暨生態(tài)圖譜報(bào)告1
評(píng)論
0/150
提交評(píng)論