版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.對(duì)于函數(shù),若滿足,則稱為函數(shù)的一對(duì)“線性對(duì)稱點(diǎn)”.若實(shí)數(shù)與和與為函數(shù)的兩對(duì)“線性對(duì)稱點(diǎn)”,則的最大值為()A. B. C. D.2.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}3.某地區(qū)教育主管部門為了對(duì)該地區(qū)模擬考試成進(jìn)行分析,隨機(jī)抽取了200分到450分之間的2000名學(xué)生的成績(jī),并根據(jù)這2000名學(xué)生的成績(jī)畫出樣本的頻率分布直方圖,如圖所示,則成績(jī)?cè)冢瑑?nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.16004.執(zhí)行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.5.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.6.閱讀下面的程序框圖,運(yùn)行相應(yīng)的程序,程序運(yùn)行輸出的結(jié)果是()A.1.1 B.1 C.2.9 D.2.87.若集合,,則()A. B. C. D.8.已知復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.9.已知函數(shù)是上的減函數(shù),當(dāng)最小時(shí),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.10.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.11.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.612.一只螞蟻在邊長(zhǎng)為的正三角形區(qū)域內(nèi)隨機(jī)爬行,則在離三個(gè)頂點(diǎn)距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角所對(duì)的邊分別是.若,,則__,面積的最大值為___.14.在中,角A,B,C的對(duì)邊分別為a,b,c,且,則________.15.在的展開式中,所有的奇數(shù)次冪項(xiàng)的系數(shù)和為-64,則實(shí)數(shù)的值為__________.16.已知,,分別為內(nèi)角,,的對(duì)邊,,,,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)數(shù)列滿足,,其前n項(xiàng)和為,數(shù)列的前n項(xiàng)積為.(1)求和數(shù)列的通項(xiàng)公式;(2)設(shè),求的前n項(xiàng)和,并證明:對(duì)任意的正整數(shù)m、k,均有.18.(12分)如圖1,四邊形是邊長(zhǎng)為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點(diǎn)到平面的距離.19.(12分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4于兩點(diǎn),若,直線MN是否恒過定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說明理由.20.(12分)已知等差數(shù)列中,,數(shù)列的前項(xiàng)和.(1)求;(2)若,求的前項(xiàng)和.21.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.22.(10分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項(xiàng)和為,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對(duì)稱點(diǎn)”,所以,故(當(dāng)且僅當(dāng)時(shí)取等號(hào)).又與為函數(shù)的“線性對(duì)稱點(diǎn),所以,所以,從而的最大值為.故選:D.【點(diǎn)睛】本題以新定義為背景,考查指數(shù)函數(shù)的運(yùn)算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.2.C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因?yàn)榛?,所?故選:C【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運(yùn)算,屬于基礎(chǔ)題.3.B【解析】
由圖可列方程算得a,然后求出成績(jī)?cè)趦?nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績(jī)?cè)趦?nèi)的頻率,所以成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).故選:B【點(diǎn)睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.4.C【解析】
框圖的功能是求等比數(shù)列的和,直到和不滿足給定的值時(shí),退出循環(huán),輸出n.【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;第四次循環(huán):;此時(shí)滿足輸出結(jié)果,故.故選:C.【點(diǎn)睛】本題考查程序框圖的應(yīng)用,建議數(shù)據(jù)比較小時(shí),可以一步一步的書寫,防止錯(cuò)誤,是一道容易題.5.B【解析】
利用換元法化簡(jiǎn)解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因?yàn)椋ǎ?,所以,令(),則(),函數(shù)的對(duì)稱軸方程為,所以,,所以,所以的值域?yàn)?故選:B【點(diǎn)睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識(shí),考查學(xué)生分析問題,解決問題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識(shí).6.C【解析】
根據(jù)程序框圖的模擬過程,寫出每執(zhí)行一次的運(yùn)行結(jié)果,屬于基礎(chǔ)題.【詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【點(diǎn)睛】本題考查了循環(huán)結(jié)構(gòu)的程序框圖的讀取以及運(yùn)行結(jié)果,屬于基礎(chǔ)題.7.A【解析】
用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點(diǎn)睛】本題考查了并集及其運(yùn)算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.8.D【解析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運(yùn)算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運(yùn)算對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】由題意知復(fù)數(shù),則,所以A選項(xiàng)不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項(xiàng)不正確;,所以C選項(xiàng)不正確;,所以D選項(xiàng)正確.故選:D【點(diǎn)睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運(yùn)算等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想.9.A【解析】
首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當(dāng)最小時(shí),,之后將函數(shù)零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的個(gè)數(shù)問題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當(dāng)最小時(shí),,函數(shù)恰有兩個(gè)零點(diǎn)等價(jià)于方程有兩個(gè)實(shí)根,等價(jià)于函數(shù)與的圖像有兩個(gè)交點(diǎn).畫出函數(shù)的簡(jiǎn)圖如下,而函數(shù)恒過定點(diǎn),數(shù)形結(jié)合可得的取值范圍為.故選:A.【點(diǎn)睛】該題考查的是有關(guān)函數(shù)的問題,涉及到的知識(shí)點(diǎn)有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.10.D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)椋?dāng)時(shí),,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.11.C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡(jiǎn),結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的半實(shí)軸長(zhǎng)為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號(hào).故選:C.【點(diǎn)睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.12.A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點(diǎn)到頂點(diǎn)、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點(diǎn)、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點(diǎn)到三個(gè)頂點(diǎn)、、的距離都大于的概率是.故選:A.【點(diǎn)睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
由正弦定理,結(jié)合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因?yàn)?,所以由正弦定理可得,所?所以,當(dāng),即時(shí),三角形面積最大.故答案為(1).1(2).【點(diǎn)睛】本題主要考查解三角形的問題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎(chǔ)題型.14.【解析】
利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.【點(diǎn)睛】本題考查利用正弦定理實(shí)現(xiàn)邊角互化,屬基礎(chǔ)題.15.3或-1【解析】
設(shè),分別令、,兩式相減即可得,即可得解.【詳解】設(shè),令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了運(yùn)算能力,屬于中檔題.16.【解析】
根據(jù)題意,利用余弦定理求得,再運(yùn)用三角形的面積公式即可求得結(jié)果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點(diǎn)睛】本題考查余弦定理的應(yīng)用和三角形的面積公式,考查計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2),證明見解析【解析】
(1)利用已知條件建立等量關(guān)系求出數(shù)列的通項(xiàng)公式.(2)利用裂項(xiàng)相消法求出數(shù)列的和,進(jìn)一步利用放縮法求出結(jié)論.【詳解】(1),,得是公比為的等比數(shù)列,,,當(dāng)時(shí),數(shù)列的前項(xiàng)積為,則,兩式相除得,得,又得,;(2),故.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,數(shù)列的前項(xiàng)和的應(yīng)用,裂項(xiàng)相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題.18.(1)證明見解析(2)【解析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點(diǎn)到平面的距離;解法二:由條件知點(diǎn)到平面的距離等于點(diǎn)到平面的距離,過點(diǎn)作的垂線,垂足,證明平面,計(jì)算出即可.【詳解】解法一:(1)依題意知,因?yàn)?,所?又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點(diǎn),所以.因?yàn)?,所?又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設(shè)點(diǎn)到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因?yàn)椋矫?,平面,所以平?所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離.過點(diǎn)作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點(diǎn)到平面的距離.由(1)知,,在中,,,得.又,所以.所以點(diǎn)到平面的距離為.【點(diǎn)睛】本題主要考查空間面面垂直的的判定及點(diǎn)到面的距離,考查學(xué)生的空間想象能力、推理論證能力、運(yùn)算求解能力.求點(diǎn)到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點(diǎn)到平面的垂線段,進(jìn)行計(jì)算即可.19.(1)(2)直線恒過定點(diǎn),詳見解析【解析】
(1)依題意由橢圓的簡(jiǎn)單性質(zhì)可求出,即得橢圓C的方程;(2)設(shè)直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點(diǎn)的坐標(biāo),同理可求出點(diǎn)的坐標(biāo),根據(jù)的坐標(biāo)可求出直線的方程,將其化簡(jiǎn)成點(diǎn)斜式,即可求出定點(diǎn)坐標(biāo).【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設(shè)直線的方程為:,則∴或,∴,同理,當(dāng)時(shí),由有.∴,同理,又∴,當(dāng)時(shí),∴直線的方程為∴直線恒過定點(diǎn),當(dāng)時(shí),此時(shí)也過定點(diǎn)..綜上:直線恒過定點(diǎn).【點(diǎn)睛】本題主要考查利用橢圓的簡(jiǎn)單性質(zhì)求橢圓的標(biāo)準(zhǔn)方程,以及直線與橢圓的位置關(guān)系應(yīng)用,定點(diǎn)問題的求法等,意在考查學(xué)生的邏輯推理能力和數(shù)學(xué)運(yùn)算能力,屬于難題.20.(1),;(2).【解析】
(1)由條件得出方程組,可求得的通項(xiàng),當(dāng)時(shí),,可得,當(dāng)時(shí),,得出是以1為首項(xiàng),2為公比的等比數(shù)列,可求得的通項(xiàng);(2)由(1)可知,,分n為偶數(shù)和n為奇數(shù)分別求得.【詳解】(1)由條件知,,,當(dāng)時(shí),,即,當(dāng)時(shí),,是以1為首項(xiàng),2為公比的等比數(shù)列,;(2)由(1)可知,,當(dāng)n為偶數(shù)時(shí),當(dāng)n為奇數(shù)時(shí),綜上,【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)的求得,以及其前n項(xiàng)和,注意分n為偶數(shù)和n為奇數(shù)兩種情況分別求得其數(shù)列的和,屬于中檔題.21.(1)證明見解析;(2).【解析】
(1)取BC的中點(diǎn)O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求得二面角的余弦值,得到結(jié)果.【詳解】(1)取BC的中點(diǎn)O,連接,,由于與是等邊三角形,所以有,,且,所以平面,平面,所以.(2)設(shè),是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,如圖所示,則,,,設(shè)平面的一個(gè)法向量為,則,令,則,又平面的一個(gè)法向量為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考化學(xué)一輪復(fù)習(xí)第四章非金屬及其化合物第一節(jié)碳硅及其重要化合物學(xué)案新人教版
- 2024高考?xì)v史一輪復(fù)習(xí)第10講近代西方民主政治的確立與發(fā)展學(xué)案含解析人民版
- 2024高考地理一輪復(fù)習(xí)第二章自然環(huán)境中的物質(zhì)運(yùn)動(dòng)和能量交換第10講氣候類型教案湘教版
- 小學(xué)2024-2025學(xué)年度第二學(xué)期美育學(xué)科教研計(jì)劃
- 2024年初中學(xué)校安全演練計(jì)劃
- 看月亮科學(xué)教案5篇
- 市政管道施工質(zhì)量控制措施
- 二零二五年航空航天零部件生產(chǎn)合作合同2篇
- 北京市豐臺(tái)區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末語文試題(原卷版)
- 廣東省梅州市興寧一中人教版2024-2025學(xué)年八年級(jí)上學(xué)期第一次月考英語試題
- 2025寒假散學(xué)典禮(休業(yè)式)上校長(zhǎng)精彩講話:以董宇輝的創(chuàng)新、羅振宇的堅(jiān)持、馬龍的熱愛啟迪未來
- 安徽省示范高中2024-2025學(xué)年高一(上)期末綜合測(cè)試物理試卷(含答案)
- 安徽省合肥市包河區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末化學(xué)試題
- PMC主管年終總結(jié)報(bào)告
- 售樓部保安管理培訓(xùn)
- 杭州出租車區(qū)域考試復(fù)習(xí)備考題庫(含答案)
- 普通高中地理課程標(biāo)準(zhǔn)簡(jiǎn)介課件
- Art285 中國視覺藝術(shù)史
- 根號(hào)2有多大?數(shù)學(xué)課件
- GB/T 13634-2000試驗(yàn)機(jī)檢驗(yàn)用測(cè)力儀的校準(zhǔn)
- 中小學(xué)道德與法治高級(jí)教師職稱評(píng)審答辯題目與答案
評(píng)論
0/150
提交評(píng)論