版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
上海市徐匯區(qū)上海第四中學(xué)2025屆高三5月全程模擬考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.2.函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.設(shè)集合,則()A. B. C. D.4.已知集合,,則A. B.C. D.5.一個(gè)超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項(xiàng)起,每一項(xiàng)都等于前面所有項(xiàng)之和(例如:1,3,4,8,16…).則首項(xiàng)為2,某一項(xiàng)為2020的超級斐波那契數(shù)列的個(gè)數(shù)為()A.3 B.4 C.5 D.66.已知為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且,過點(diǎn)的動(dòng)直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),拋物線的準(zhǔn)線與軸的交點(diǎn)為.給出下列四個(gè)命題:①在拋物線上滿足條件的點(diǎn)僅有一個(gè);②若是拋物線準(zhǔn)線上一動(dòng)點(diǎn),則的最小值為;③無論過點(diǎn)的直線在什么位置,總有;④若點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)在同一條直線上.其中所有正確命題的個(gè)數(shù)為()A.1 B.2 C.3 D.47.已知,若,則等于()A.3 B.4 C.5 D.68.博覽會(huì)安排了分別標(biāo)有序號為“1號”“2號”“3號”的三輛車,等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P29.設(shè)為定義在上的奇函數(shù),當(dāng)時(shí),(為常數(shù)),則不等式的解集為()A. B. C. D.10.已知的內(nèi)角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.11.已知雙曲線(,),以點(diǎn)()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點(diǎn),若,則的離心率為()A. B. C. D.12.定義在上函數(shù)滿足,且對任意的不相等的實(shí)數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實(shí)數(shù)m的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中各項(xiàng)的系數(shù)和是________.14.已知正方形邊長為,空間中的動(dòng)點(diǎn)滿足,,則三棱錐體積的最大值是______.15.已知二項(xiàng)式的展開式中各項(xiàng)的二項(xiàng)式系數(shù)和為512,其展開式中第四項(xiàng)的系數(shù)__________.16.中,角的對邊分別為,且成等差數(shù)列,若,,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點(diǎn)為,當(dāng)變化時(shí),點(diǎn)構(gòu)成曲線,證明:過原點(diǎn)的任意直線與曲線有且僅有一個(gè)公共點(diǎn).18.(12分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?文科生理科生合計(jì)獲獎(jiǎng)6不獲獎(jiǎng)合計(jì)400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)年,山東省高考將全面實(shí)行“選”的模式(即:語文、數(shù)學(xué)、外語為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進(jìn)行考試).為了了解學(xué)生對物理學(xué)科的喜好程度,某高中從高一年級學(xué)生中隨機(jī)抽取人做調(diào)查.統(tǒng)計(jì)顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認(rèn)為“喜歡物理與性別有關(guān)”;(2)為了了解學(xué)生對選科的認(rèn)識,年級決定召開學(xué)生座談會(huì).現(xiàn)從名男同學(xué)和名女同學(xué)(其中男女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會(huì),記參加座談會(huì)的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.20.(12分)某大學(xué)開學(xué)期間,該大學(xué)附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務(wù)的前54單沒有提成,從第55單開始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機(jī)選取一天,估計(jì)這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請你為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)21.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大??;(2)在棱上確定一點(diǎn),使二面角的平面角的余弦值為.22.(10分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.2.B【解析】
對分類討論,當(dāng),函數(shù)在單調(diào)遞減,當(dāng),根據(jù)對勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當(dāng)時(shí),函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.本題考查函數(shù)單調(diào)性,熟練掌握簡單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.3.C【解析】
解對數(shù)不等式求得集合,由此求得兩個(gè)集合的交集.【詳解】由,解得,故.依題意,所以.故選:C本小題主要考查對數(shù)不等式的解法,考查集合交集的概念和運(yùn)算,屬于基礎(chǔ)題.4.D【解析】
因?yàn)?,,所以,,故選D.5.A【解析】
根據(jù)定義,表示出數(shù)列的通項(xiàng)并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個(gè)數(shù).【詳解】由題意可知首項(xiàng)為2,設(shè)第二項(xiàng)為,則第三項(xiàng)為,第四項(xiàng)為,第五項(xiàng)為第n項(xiàng)為且,則,因?yàn)?,?dāng)?shù)闹悼梢詾?;即?個(gè)這種超級斐波那契數(shù)列,故選:A.本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.6.C【解析】
①:由拋物線的定義可知,從而可求的坐標(biāo);②:做關(guān)于準(zhǔn)線的對稱點(diǎn)為,通過分析可知當(dāng)三點(diǎn)共線時(shí)取最小值,由兩點(diǎn)間的距離公式,可求此時(shí)最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達(dá)定理,可知焦點(diǎn)坐標(biāo)的關(guān)系,進(jìn)而可求,從而可判斷出的關(guān)系;④:計(jì)算直線的斜率之差,可得兩直線斜率相等,進(jìn)而可判斷三點(diǎn)在同一條直線上.【詳解】解:對于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點(diǎn)有二個(gè),故①不正確;對于②,不妨設(shè),則關(guān)于準(zhǔn)線的對稱點(diǎn)為,故,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點(diǎn)坐標(biāo)為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補(bǔ),所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點(diǎn)在同一條直線上,故④正確.故選:C.本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點(diǎn)的斜率公式.本題的難點(diǎn)在于第二個(gè)命題,結(jié)合初中的“飲馬問題”分析出何時(shí)取最小值.7.C【解析】
先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因?yàn)椋杂?,得,故選:C.該題考查的是有關(guān)向量的問題,涉及到的知識點(diǎn)有向量的減法坐標(biāo)運(yùn)算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.8.C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個(gè)數(shù),屬于基礎(chǔ)題.9.D【解析】
由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因?yàn)樵谏鲜瞧婧瘮?shù).所以,解得,所以當(dāng)時(shí),,且時(shí),單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)?,故有,解?故選:D.本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對函數(shù)性質(zhì)的靈活運(yùn)用能力,是一道中檔題.10.B【解析】
延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.11.A【解析】
求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點(diǎn),且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因?yàn)?,所以圓心到的距離為:,即,因?yàn)?,所以解得.故選A.本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計(jì)算能力,屬于中檔題.對于離心率求解問題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個(gè)思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.12.B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計(jì)算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計(jì)算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計(jì)算最值,即可得出答案.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意得出展開式中共有11項(xiàng),;再令求得展開式中各項(xiàng)的系數(shù)和.【詳解】由的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以展開式中共有11項(xiàng),所以;令,可求得展開式中各項(xiàng)的系數(shù)和是:.故答案為:1.本小題主要考查二項(xiàng)式展開式的通項(xiàng)公式的運(yùn)用,考查二項(xiàng)式展開式各項(xiàng)系數(shù)和的求法,屬于基礎(chǔ)題.14.【解析】
以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,設(shè)點(diǎn),根據(jù)題中條件得出,進(jìn)而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,則,,,設(shè)點(diǎn),空間中的動(dòng)點(diǎn)滿足,,所以,整理得,,當(dāng),時(shí),取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.15.【解析】
先令可得其展開式各項(xiàng)系數(shù)的和,又由題意得,解得,進(jìn)而可得其展開式的通項(xiàng),即可得答案.【詳解】令,則有,解得,則二項(xiàng)式的展開式的通項(xiàng)為,令,則其展開式中的第4項(xiàng)的系數(shù)為,故答案為:此題考查二項(xiàng)式定理的應(yīng)用,解題時(shí)需要區(qū)分展開式中各項(xiàng)系數(shù)的和與各二項(xiàng)式系數(shù)和,屬于基礎(chǔ)題.16..【解析】
由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析【解析】
(1)由恒成立,可得恒成立,進(jìn)而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進(jìn)而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進(jìn)而可得,即曲線的方程為,進(jìn)而只需證明對任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點(diǎn),即可證明結(jié)論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時(shí),;時(shí),,即時(shí),;時(shí),,時(shí),單調(diào)遞減;時(shí),單調(diào)遞增,時(shí),取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點(diǎn),則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當(dāng)時(shí),恒成立,在上單調(diào)遞增.,,,存在滿足時(shí),使得.又單調(diào)遞增,所以為唯一解.②當(dāng)時(shí),二次函數(shù),滿足,則恒成立,在上單調(diào)遞增.,,存在使得,又在上單調(diào)遞增,為唯一解.③當(dāng)時(shí),二次函數(shù),滿足,此時(shí)有兩個(gè)不同的解,不妨設(shè),,,列表如下:00↗極大值↘極小值↗由表可知,當(dāng)時(shí),的極大值為.,,,,,..下面來證明,構(gòu)造函數(shù),則,當(dāng)時(shí),,此時(shí)單調(diào)遞增,,時(shí),,,故成立.,存在,使得.又在單調(diào)遞增,為唯一解.所以,對任意,方程有唯一解,即過原點(diǎn)任意的直線與曲線有且僅有一個(gè)公共點(diǎn).本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的應(yīng)用,考查不等式恒成立問題,考查利用單調(diào)性研究圖象交點(diǎn)問題,考查學(xué)生的計(jì)算求解能力與推理論證能力,屬于難題.18.(1),,.(2)填表見解析;在犯錯(cuò)誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)(3)詳見解析【解析】
(1)根據(jù)頻率分步直方圖和構(gòu)成以2為公比的等比數(shù)列,即可得解;(2)由頻率分步直方圖算出相應(yīng)的頻數(shù)即可填寫列聯(lián)表,再用的計(jì)算公式運(yùn)算即可;(3)獲獎(jiǎng)的概率為,隨機(jī)變量,再根據(jù)二項(xiàng)分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因?yàn)闃?gòu)成以2為公比的等比數(shù)列,所以,解得,所以,.故,,.(2)獲獎(jiǎng)的人數(shù)為人,因?yàn)閰⒖嫉奈目粕c理科生人數(shù)之比為,所以400人中文科生的數(shù)量為,理科生的數(shù)量為.由表可知,獲獎(jiǎng)的文科生有6人,所以獲獎(jiǎng)的理科生有人,不獲獎(jiǎng)的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計(jì)獲獎(jiǎng)61420不獲獎(jiǎng)74306380合計(jì)80320400所以在犯錯(cuò)誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān).(3)由(2)可知,獲獎(jiǎng)的概率為,的可能取值為0,1,2,,,,分布列如下:012數(shù)學(xué)期望為.本題考查頻率分布直方圖、統(tǒng)計(jì)案例和離散型隨機(jī)變量的分布列與期望,考查學(xué)生的閱讀理解能力和計(jì)算能力,屬于中檔題.19.(1)有的把握認(rèn)為喜歡物理與性別有關(guān);(2)分布列見解析,.【解析】
(1)根據(jù)題目所給信息,列出列聯(lián)表,計(jì)算的觀測值,對照臨界值表可得出結(jié)論;(2)設(shè)參加座談會(huì)的人中喜歡物理的男同學(xué)有人,女同學(xué)有人,則,確定的所有取值為、、、、.根據(jù)計(jì)數(shù)原理計(jì)算出每個(gè)所對應(yīng)的概率,列出分布列計(jì)算期望即可.【詳解】(1)根據(jù)所給條件得列聯(lián)表如下:男女合計(jì)喜歡物理不喜歡物理合計(jì),所以有的把握認(rèn)為喜歡物理與性別有關(guān);(2)設(shè)參加座談會(huì)的人中喜歡物理的男同學(xué)有人,女同學(xué)有人,則,由題意可知,的所有可能取值為、、、、.,,,,.所以的分布列為:所以.本題考查了獨(dú)立性檢驗(yàn)、離散型隨機(jī)變量的概率分布列.離散型隨機(jī)變量的期望.屬于中等題.20.(1)0.4;(2);(3)應(yīng)選擇方案,理由見解析【解析】
(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨(dú)立重復(fù)試驗(yàn)概率求法,先求得四人中有0人、1人選擇方案的概率,再由對立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計(jì)算兩種計(jì)算方式下的數(shù)學(xué)期望,并根據(jù)數(shù)學(xué)期望作出選擇.【詳解】(1)設(shè)事件為“隨機(jī)選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務(wù)量不少于65單的頻率分別為,∵,∴估計(jì)為0.4.(2)設(shè)事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設(shè)事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,方案的日工資,方案的日工資,所以隨機(jī)變量的分布列為1601802002202402602800.050.050.20.30.20.150.05;同理,隨機(jī)變量的分布列為1501802302803300.30.30.20.150.05.∵,∴建議騎手應(yīng)選擇方案.本題考查了頻率分布直方圖的簡單應(yīng)用,獨(dú)立重復(fù)試驗(yàn)概率的求法,數(shù)學(xué)期望的求法并由期望作出方案選擇,屬于中檔題.21.(1)(2)【解析】試題分析:(1)因?yàn)锳B⊥AC,A1B⊥平面ABC,所以以A為坐標(biāo)原點(diǎn),分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024五人入股成立教育科技有限公司合作協(xié)議書3篇
- 2025年南昌從業(yè)資格證考試答案貨運(yùn)
- 2025年吉林貨運(yùn)駕駛員從業(yè)資格題庫
- 2025年郴州貨運(yùn)資格證考試真題
- 2024年版:高清影視制作與后期服務(wù)合同
- 2025年江西貨運(yùn)從業(yè)資格證考試一共多少題
- 2025年海西貨運(yùn)從業(yè)資格證怎么考
- 2024年煤炭貨場運(yùn)營許可合同
- 2024年度互聯(lián)網(wǎng)+教育平臺委托經(jīng)營授權(quán)書3篇
- 2024年版權(quán)許可使用合同(電子書)
- 安全管理年終工作總結(jié)PPT模板下載
- 2022-2023學(xué)年湖南省醴陵市小學(xué)語文六年級下冊期末高分通關(guān)題
- 2023學(xué)年完整公開課版firstaidsforburns
- 新聞編輯(修改版)馬工程課件 第六章
- 2023年遼寧石化職業(yè)技術(shù)學(xué)院高職單招(英語)試題庫含答案解析
- GB/T 34960.5-2018信息技術(shù)服務(wù)治理第5部分:數(shù)據(jù)治理規(guī)范
- 2023年上海英語高考卷及答案完整版
- 2023年復(fù)旦大學(xué)博士研究生入學(xué)考試專家推薦信模板
- 危險(xiǎn)源風(fēng)險(xiǎn)告知及控制措施(維修電工)
- 自動(dòng)控制理論的早期發(fā)展歷史課件
- 國家開放大學(xué)《機(jī)械設(shè)計(jì)基礎(chǔ)》機(jī)考試題001-009參考答案
評論
0/150
提交評論