版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.2.若復(fù)數(shù)z滿足,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在中,在邊上滿足,為的中點(diǎn),則().A. B. C. D.4.已知數(shù)列是公比為的等比數(shù)列,且,,成等差數(shù)列,則公比的值為(
)A. B. C.或 D.或5.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.6.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.47.記其中表示不大于x的最大整數(shù),若方程在在有7個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍()A. B. C. D.8.已知雙曲線的焦距是虛軸長(zhǎng)的2倍,則雙曲線的漸近線方程為()A. B. C. D.9.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}10.記遞增數(shù)列的前項(xiàng)和為.若,,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.11.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.12.將4名大學(xué)生分配到3個(gè)鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種二、填空題:本題共4小題,每小題5分,共20分。13.記Sk=1k+2k+3k+……+nk,當(dāng)k=1,2,3,……時(shí),觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測(cè),A﹣B=_____.14.在平面直角坐標(biāo)系中,點(diǎn)在曲線:上,且在第四象限內(nèi).已知曲線在點(diǎn)處的切線為,則實(shí)數(shù)的值為_(kāi)_________.15.已知橢圓C:1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的焦距為2c,過(guò)C外一點(diǎn)P(c,2c)作線段PF1,PF2分別交橢圓C于點(diǎn)A、B,若|PA|=|AF1|,則_____.16.函數(shù)在處的切線方程是____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若,證明:當(dāng)時(shí),;(2)若在只有一個(gè)零點(diǎn),求的值.18.(12分)已知橢圓,點(diǎn),點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),點(diǎn)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點(diǎn)為,若不經(jīng)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn).且與圓相切.的周長(zhǎng)是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.19.(12分)在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為(為參數(shù)),與交于,兩點(diǎn).(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;(2)設(shè)點(diǎn);若、、成等比數(shù)列,求的值20.(12分)已知函數(shù).(1)設(shè),若存在兩個(gè)極值點(diǎn),,且,求證:;(2)設(shè),在不單調(diào),且恒成立,求的取值范圍.(為自然對(duì)數(shù)的底數(shù)).21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若曲線、交于、兩點(diǎn),是曲線上的動(dòng)點(diǎn),求面積的最大值.22.(10分)設(shè)的內(nèi)角、、的對(duì)邊長(zhǎng)分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因?yàn)?,所以的解集為,故選:A.【點(diǎn)睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計(jì)算求解能力與推理能力,屬于基礎(chǔ)題.2.A【解析】
化簡(jiǎn)復(fù)數(shù),求得,得到復(fù)數(shù)在復(fù)平面對(duì)應(yīng)點(diǎn)的坐標(biāo),即可求解.【詳解】由題意,復(fù)數(shù)z滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為位于第一象限故選:A.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何表示方法,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,結(jié)合復(fù)數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.3.B【解析】
由,可得,,再將代入即可.【詳解】因?yàn)椋?,?故選:B.【點(diǎn)睛】本題考查平面向量的線性運(yùn)算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.4.D【解析】
由成等差數(shù)列得,利用等比數(shù)列的通項(xiàng)公式展開(kāi)即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點(diǎn)睛】本題考查等差等比數(shù)列的綜合,利用等差數(shù)列的性質(zhì)建立方程求q是解題的關(guān)鍵,對(duì)于等比數(shù)列的通項(xiàng)公式也要熟練.5.B【解析】
根據(jù)函數(shù)單調(diào)性逐項(xiàng)判斷即可【詳解】對(duì)A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯(cuò)誤;對(duì)B,因?yàn)閥=cx為增函數(shù),且a>b,所以ca>cb,正確對(duì)C,因?yàn)閥=xc為增函數(shù),故,錯(cuò)誤;對(duì)D,因?yàn)樵跒闇p函數(shù),故,錯(cuò)誤故選B.【點(diǎn)睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.6.B【解析】
因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?.D【解析】
做出函數(shù)的圖象,問(wèn)題轉(zhuǎn)化為函數(shù)的圖象在有7個(gè)交點(diǎn),而函數(shù)在上有3個(gè)交點(diǎn),則在上有4個(gè)不同的交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個(gè)不同的實(shí)數(shù)根,則在上有4個(gè)不同的實(shí)數(shù)根,當(dāng)直線經(jīng)過(guò)時(shí),;當(dāng)直線經(jīng)過(guò)時(shí),,可知當(dāng)時(shí),直線與的圖象在上有4個(gè)交點(diǎn),即方程,在上有4個(gè)不同的實(shí)數(shù)根.故選:D.【點(diǎn)睛】本題考查方程根的個(gè)數(shù)求參數(shù),利用函數(shù)零點(diǎn)和方程之間的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)是解題的關(guān)鍵,運(yùn)用數(shù)形結(jié)合是解決函數(shù)零點(diǎn)問(wèn)題的基本思想,屬于中檔題.8.A【解析】
根據(jù)雙曲線的焦距是虛軸長(zhǎng)的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長(zhǎng)的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),以及雙曲線的漸近線方程.9.C【解析】
根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點(diǎn)睛】本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.10.D【解析】
由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.11.D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點(diǎn)睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.12.B【解析】
把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點(diǎn)睛】本題考查排列組合,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
觀察知各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),據(jù)此計(jì)算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.【點(diǎn)睛】本題考查了歸納推理,意在考查學(xué)生的推理能力.14.【解析】
先設(shè)切點(diǎn),然后對(duì)求導(dǎo),根據(jù)切線方程的斜率求出切點(diǎn)的橫坐標(biāo),代入原函數(shù)求出切點(diǎn)的縱坐標(biāo),即可得出切得,最后將切點(diǎn)代入切線方程即可求出實(shí)數(shù)的值.【詳解】解:依題意設(shè)切點(diǎn),因?yàn)?則,又因?yàn)榍€在點(diǎn)處的切線為,,解得,又因?yàn)辄c(diǎn)在第四象限內(nèi),則,.則又因?yàn)辄c(diǎn)在切線上.所以.所以.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,以及導(dǎo)數(shù)的運(yùn)算法則和已知切線斜率求出切點(diǎn)坐標(biāo),本題屬于基礎(chǔ)題.15.【解析】
根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點(diǎn)A為橢圓上頂點(diǎn),則有b=c,解出B的坐標(biāo)即可得到比值.【詳解】因?yàn)閨PA|=|AF1|,所以點(diǎn)A是線段PF1的中點(diǎn),又因?yàn)辄c(diǎn)O為線段F1F2的中點(diǎn),所以O(shè)A∥PF2,且|PF2|=2|OA|,因?yàn)辄c(diǎn)P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以O(shè)A⊥x軸,則點(diǎn)A為橢圓上頂點(diǎn),所以|OA|=b,則2b=2c,所以b=c,ac,設(shè)B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.【點(diǎn)睛】本題考查橢圓的基本性質(zhì),考查直線位置關(guān)系的判斷,方程思想,屬于中檔題.16.【解析】
求出和的值,利用點(diǎn)斜式可得出所求切線的方程.【詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析;(2)【解析】
分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點(diǎn),等價(jià)研究的零點(diǎn),先求導(dǎo)數(shù):,這里產(chǎn)生兩個(gè)討論點(diǎn),一個(gè)是a與零,一個(gè)是x與2,當(dāng)時(shí),,沒(méi)有零點(diǎn);當(dāng)時(shí),先減后增,從而確定只有一個(gè)零點(diǎn)的必要條件,再利用零點(diǎn)存在定理確定條件的充分性,即得a的值.詳解:(1)當(dāng)時(shí),等價(jià)于.設(shè)函數(shù),則.當(dāng)時(shí),,所以在單調(diào)遞減.而,故當(dāng)時(shí),,即.(2)設(shè)函數(shù).在只有一個(gè)零點(diǎn)當(dāng)且僅當(dāng)在只有一個(gè)零點(diǎn).(i)當(dāng)時(shí),,沒(méi)有零點(diǎn);(ii)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒(méi)有零點(diǎn);②若,即,在只有一個(gè)零點(diǎn);③若,即,由于,所以在有一個(gè)零點(diǎn),由(1)知,當(dāng)時(shí),,所以.故在有一個(gè)零點(diǎn),因此在有兩個(gè)零點(diǎn).綜上,在只有一個(gè)零點(diǎn)時(shí),.點(diǎn)睛:利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問(wèn)題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問(wèn)題,從而構(gòu)建不等式求解.18.(1)(2)是,【解析】
(1)設(shè),根據(jù)條件可求出的坐標(biāo),再利用在橢圓上,代入橢圓方程求出即可;(2)設(shè)運(yùn)用勾股定理和點(diǎn)滿足橢圓方程,求出,,再利用焦半徑公式表示出,進(jìn)而求出周長(zhǎng)為定值.【詳解】(1)設(shè),因?yàn)?即則,即,因?yàn)榫谏?代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設(shè)切點(diǎn)為,則,同理即,所以,又,則的周長(zhǎng),所以周長(zhǎng)為定值.【點(diǎn)睛】標(biāo)準(zhǔn)方程的求解,橢圓中的定值問(wèn)題,考查焦半徑公式的運(yùn)用,考查邏輯推理能力和運(yùn)算求解能力,難度較難.19.(1)曲線的直角坐標(biāo)方程為,直線的普通方程為;(2)【解析】
(1)由極坐標(biāo)與直角坐標(biāo)的互化公式和參數(shù)方程與普通方程的互化,即可求解曲線的直角坐標(biāo)方程和直線的普通方程;(2)把的參數(shù)方程代入拋物線方程中,利用韋達(dá)定理得,,可得到,根據(jù)因?yàn)?,,成等比?shù)列,列出方程,即可求解.【詳解】(1)由題意,曲線的極坐標(biāo)方程可化為,又由,可得曲線的直角坐標(biāo)方程為,由直線的參數(shù)方程為(為參數(shù)),消去參數(shù),得,即直線的普通方程為;(2)把的參數(shù)方程代入拋物線方程中,得,由,設(shè)方程的兩根分別為,,則,,可得,.所以,,.因?yàn)?,,成等比?shù)列,所以,即,則,解得解得或(舍),所以實(shí)數(shù).【點(diǎn)睛】本題主要考查了極坐標(biāo)方程與直角坐標(biāo)方程,以及參數(shù)方程與普通方程的互化,以及直線參數(shù)方程的應(yīng)用,其中解答中熟記互化公式,合理應(yīng)用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.20.(1)證明見(jiàn)解析;(2).【解析】
(1)先求出,又由可判斷出在上單調(diào)遞減,故,令,記,利用導(dǎo)數(shù)求出的最小值即可;(2)由在上不單調(diào)轉(zhuǎn)化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調(diào)遞減,令,記,則在上單調(diào)遞增;,在上單調(diào)遞增;,(2),,在上不單調(diào),在上有正有負(fù),在上有解,,,恒成立,記,則,記,,在上單調(diào)增,在上單調(diào)減.于是知(i)當(dāng)即時(shí),恒成立
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)合集人事管理篇十篇
- 《證券交易流程》課件
- 《企業(yè)戰(zhàn)略管理》課件
- 新生引航共筑未來(lái)
- 學(xué)校三年級(jí)班主任工作總結(jié)5篇
- 2023年-2024年新員工入職安全教育培訓(xùn)試題附答案(突破訓(xùn)練)
- 大學(xué)畢業(yè)晚會(huì)策劃書(shū)合集15篇
- 2023年-2024年新入職員工安全教育培訓(xùn)試題附下載答案可打印
- 2024員工三級(jí)安全培訓(xùn)考試題(原創(chuàng)題)
- 保護(hù)環(huán)境的建議書(shū)(合集15篇)
- 急診科運(yùn)用PDCA循環(huán)降低急診危重患者院內(nèi)轉(zhuǎn)運(yùn)風(fēng)險(xiǎn)品管圈QCC專案結(jié)題
- 2024年統(tǒng)編版新教材語(yǔ)文小學(xué)一年級(jí)上冊(cè)全冊(cè)單元測(cè)試題及答案(共8單元)
- 醫(yī)務(wù)人員職業(yè)暴露預(yù)防及處理課件(完整版)
- DB11T 1470-2022 鋼筋套筒灌漿連接技術(shù)規(guī)程
- 護(hù)士急診科進(jìn)修匯報(bào)
- 2025年統(tǒng)編版中考語(yǔ)文課內(nèi)文言文《湖心亭看雪》三年中考試題+模擬題(解析版)
- 2024學(xué)年四川省成都天府新區(qū)九年級(jí)上學(xué)期一診數(shù)學(xué)模擬試題(原卷版)
- 倉(cāng)庫(kù)勞務(wù)外包方案
- 2024至2030年中國(guó)頸部按摩器行業(yè)發(fā)展戰(zhàn)略規(guī)劃及市場(chǎng)規(guī)模預(yù)測(cè)報(bào)告
- 人教版英語(yǔ)2024七年級(jí)上冊(cè)全冊(cè)單元測(cè)試卷
- 《工程招投標(biāo)與合同管理》期末考試復(fù)習(xí)題及參考答案
評(píng)論
0/150
提交評(píng)論