版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
陜西省商洛市2025年高三畢業(yè)班第二次高考適應性測試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)(其中,圖象的一個對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度2.某中學2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該校考生的升學情況,統(tǒng)計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達線人數(shù)減少C.與2016年相比,2019年二本達線人數(shù)增加了0.3倍D.2016年與2019年藝體達線人數(shù)相同3.已知集合,,若,則()A.4 B.-4 C.8 D.-84.已知i是虛數(shù)單位,則1+iiA.-12+32i5.如圖1,《九章算術(shù)》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.6.若向量,,則與共線的向量可以是()A. B. C. D.7.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.8.若復數(shù)(為虛數(shù)單位),則的共軛復數(shù)的模為()A. B.4 C.2 D.9.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.10.已知函數(shù)有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.11.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.512.已知復數(shù)z滿足i?z=2+i,則z的共軛復數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i二、填空題:本題共4小題,每小題5分,共20分。13.已知一組數(shù)據(jù),1,0,,的方差為10,則________14.若實數(shù)x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標函數(shù)15.已知數(shù)列的各項均為正數(shù),記為的前n項和,若,,則________.16.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領(lǐng)養(yǎng)了此種盆栽植物10株,設為其中成活的株數(shù),若的方差,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()的離心率為,且經(jīng)過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關(guān)于軸對稱?若存在,求出點的坐標;若不存在,說明理由.18.(12分)如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設平面ABF與平面CDF所成的二面角為θ,求.19.(12分)已知函數(shù).(1)若,且,求證:;(2)若時,恒有,求的最大值.20.(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點E,F(xiàn)是線段PC中點,G為線段EC中點.Ⅰ求證:平面PBD;Ⅱ求證:.21.(12分)為增強學生的法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛(wèi)士”活動,并組織全校學生進行法律知識競賽.現(xiàn)從全校學生中隨機抽取50名學生,統(tǒng)計他們的競賽成績,已知這50名學生的競賽成績均在[50,100]內(nèi),并得到如下的頻數(shù)分布表:分數(shù)段[50,60)[60,70)[70,80)[80,90)[90,100]人數(shù)51515123(1)將競賽成績在內(nèi)定義為“合格”,競賽成績在內(nèi)定義為“不合格”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關(guān)?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學生中抽取5名學生,再從這5名學生中隨機抽取2名學生,求這2名學生競賽成績都合格的概率.參考公式及數(shù)據(jù):,其中.22.(10分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由函數(shù)的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點,,可得,,解得:.再根據(jù)五點法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個單位長度,可得的圖象,故選B.本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導公式的應用,屬于中檔題.2.A【解析】
設2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達線人數(shù),2016年二本達線人數(shù),增加了倍,故C錯誤;2016年藝體達線人數(shù),2019年藝體達線人數(shù),故D錯誤.故選:A.本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.3.B【解析】
根據(jù)交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.本題考查交集的概念,屬于基礎題.4.D【解析】
利用復數(shù)的運算法則即可化簡得出結(jié)果【詳解】1+i故選D本題考查了復數(shù)代數(shù)形式的乘除運算,屬于基礎題。5.B【解析】如圖,已知,,
∴,解得
,∴,解得
.∴折斷后的竹干高為4.55尺故選B.6.B【解析】
先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.7.B【解析】
奇函數(shù)滿足定義域關(guān)于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數(shù),錯誤;B:定義域關(guān)于原點對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點對稱,且滿足奇函數(shù),,在上,因為,所以在上不是增函數(shù),錯誤;D:定義域關(guān)于原點對稱,且,滿足奇函數(shù),在上很明顯存在變號零點,所以在上不是增函數(shù),錯誤;故選:B此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點對稱,屬于簡單題目.8.D【解析】
由復數(shù)的綜合運算求出,再寫出其共軛復數(shù),然后由模的定義計算模.【詳解】,.故選:D.本題考查復數(shù)的運算,考查共軛復數(shù)與模的定義,屬于基礎題.9.A【解析】
根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.本題考查了直線和圓的位置關(guān)系,雙曲線的漸近線,意在考查學生的計算能力和轉(zhuǎn)化能力.10.C【解析】
先求導得(),由于函數(shù)有兩個不同的極值點,,轉(zhuǎn)化為方程有兩個不相等的正實數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數(shù)有兩個不同的極值點,,所以方程有兩個不相等的正實數(shù)根,于是有解得.若不等式有解,所以因為.設,,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.本題考查利用導數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計算能力,有一定的難度.11.D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.12.D【解析】
兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復數(shù)為1+2i,選D.的共軛復數(shù)為二、填空題:本題共4小題,每小題5分,共20分。13.7或【解析】
依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.本題主要考查方差公式的應用.14.12【解析】
畫出約束條件的可行域,求出最優(yōu)解,即可求解目標函數(shù)的最大值.【詳解】根據(jù)約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標函數(shù)y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12.故答案為:12.本題考查線性規(guī)劃的簡單應用,屬于基礎題.15.127【解析】
已知條件化簡可化為,等式兩邊同時除以,則有,通過求解方程可解得,即證得數(shù)列為等比數(shù)列,根據(jù)已知即可解得所求.【詳解】由..故答案為:.本題考查通過遞推公式證明數(shù)列為等比數(shù)列,考查了等比的求和公式,考查學生分析問題的能力,難度較易.16.【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù),即,整理.設直線的方程為,與橢圓聯(lián)立,將韋達定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點,滿足直線與直線恰關(guān)于軸對稱.設直線的方程為,與橢圓聯(lián)立,整理得,.設,,定點.(依題意則由韋達定理可得,,.直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當,即時,直線與直線恰關(guān)于軸對稱成立.特別地,當直線為軸時,也符合題意.綜上所述,存在軸上的定點,滿足直線與直線恰關(guān)于軸對稱.本題考查橢圓方程,直線與橢圓位置關(guān)系,熟記橢圓方程簡單性質(zhì),熟練轉(zhuǎn)化題目條件,準確計算是關(guān)鍵,是中檔題.18.(1)證明見解析(2)【解析】
(1)根據(jù)線面垂直的性質(zhì)定理,可得DE//BF,然后根據(jù)勾股定理計算可得BF=DE,最后利用線面平行的判定定理,可得結(jié)果.(2)利用建系的方法,可得平面ABF的一個法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關(guān)系,可得結(jié)果.【詳解】(1)因為DE⊥平面ABCD,所以DEAD,因為AD=4,AE=5,DE=3,同理BF=3,又DE⊥平面ABCD,BF⊥平面ABCD,所以DE//BF,又BF=DE,所以平行四邊形BEDF,故DF//BE,因為BE平面BCE,DF平面BCE所以DF//平面BCE;(2)建立如圖空間直角坐標系,則D(0,0,0),A(4,0,0),C(0,4,0),F(xiàn)(4,3,﹣3),,設平面CDF的法向量為,由,令x=3,得,易知平面ABF的一個法向量為,所以,故.本題考查線面平行的判定以及利用建系方法解決面面角問題,屬基礎題.19.(1)見解析;(2).【解析】
(1)利用導數(shù)分析函數(shù)的單調(diào)性,并設,則,,將不等式等價轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,通過推導出來證得結(jié)論;(2)構(gòu)造函數(shù),對實數(shù)分、、,利用導數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過構(gòu)造新函數(shù),利用導數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),,所以,函數(shù)單調(diào)遞增,所以,當時,,此時,函數(shù)單調(diào)遞減;當時,,此時,函數(shù)單調(diào)遞增.要證,即證.不妨設,則,,下證,即證,構(gòu)造函數(shù),,所以,函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,,且函數(shù)在區(qū)間上單調(diào)遞增,所以,即,故結(jié)論成立;(2)由恒成立,得恒成立,令,則.①當時,對任意的,,函數(shù)在上單調(diào)遞增,當時,,不符合題意;②當時,;③當時,令,得,此時,函數(shù)單調(diào)遞增;令,得,此時,函數(shù)單調(diào)遞減...令,設,則.當時,,此時函數(shù)單調(diào)遞增;當時,,此時函數(shù)單調(diào)遞減.所以,函數(shù)在處取得最大值,即.因此,的最大值為.本題考查利用導數(shù)證明不等式,同時也考查了利用導數(shù)求代數(shù)式的最值,構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力,屬于難題.20.(1)見解析;(2)見解析.【解析】分析:(1)先證明,再證明FG//平面PBD.(2)先證明平面,再證明BD⊥FG.詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度新型資產(chǎn)擔保合同登記與解除服務協(xié)議2篇
- 2024版金融科技產(chǎn)品推廣與分成合同
- 2024更新版:裝飾工程進度調(diào)整合同
- 2025年度ktv消防演練策劃及實施合同3篇
- 2024年連云港房產(chǎn)購置協(xié)議
- 2024版地皮居間投資合作協(xié)議3篇
- 二零二五年度搬運設備進出口代理合同3篇
- 二零二五年度度假村草皮種植與生態(tài)保護合同3篇
- 2025年度創(chuàng)業(yè)公司市場營銷顧問聘用協(xié)議3篇
- 沙子采購合同
- DB-T29-74-2018天津市城市道路工程施工及驗收標準
- 中科院簡介介紹
- 《小石潭記》教學實錄及反思特級教師-王君
- 【高中語文】《錦瑟》《書憤》課件+++統(tǒng)編版+高中語文選擇性必修中冊+
- 醫(yī)療機構(gòu)(醫(yī)院)停電和突然停電應急預案試題及答案
- 24年海南生物會考試卷
- 國家戰(zhàn)略思維課件
- 施工單位自評報告
- 招商租金政策方案
- 銀行金庫集中可行性報告
- 工程結(jié)算中的風險識別與防控
評論
0/150
提交評論