九年級數(shù)學(xué)人教版(上冊)24.2.2 第2課時 切線的判定與性質(zhì)_第1頁
九年級數(shù)學(xué)人教版(上冊)24.2.2 第2課時 切線的判定與性質(zhì)_第2頁
九年級數(shù)學(xué)人教版(上冊)24.2.2 第2課時 切線的判定與性質(zhì)_第3頁
九年級數(shù)學(xué)人教版(上冊)24.2.2 第2課時 切線的判定與性質(zhì)_第4頁
九年級數(shù)學(xué)人教版(上冊)24.2.2 第2課時 切線的判定與性質(zhì)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

24.2直線和圓的位置關(guān)系第2課時切線的判定與性質(zhì)1.會判定一條直線是否是圓的切線并會過圓上一點作圓的切線.2.理解并掌握圓的切線的判定定理及性質(zhì)定理.(重點)3.能運用圓的切線的判定定理和性質(zhì)定理解決問題.(難點)學(xué)習(xí)目標(biāo)目錄頁講授新課當(dāng)堂練習(xí)課堂小結(jié)新課導(dǎo)入新課導(dǎo)入教學(xué)目標(biāo)教學(xué)重點情境引入轉(zhuǎn)動雨傘時飛出的雨滴,用砂輪磨刀時擦出的火花,都是沿著什么方向飛出的?都是沿切線方向飛出的.

生活中??吹角芯€的實例,如何判斷一條直線是否為切線呢?學(xué)完這節(jié)課,你就都會明白.新課導(dǎo)入講授新課典例精講歸納總結(jié)講授新課知識點切線的判定1如圖,在⊙O中,經(jīng)過半徑OA的外端點A

作直線

l⊥OA,則圓心O到直線l的距離是多少?直線l和⊙O

有什么位置關(guān)系?經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.lOA經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.OA為⊙O的半徑BC

OA于ABC為⊙O的切線OABC切線的判定定理應(yīng)用格式要點歸納講授新課判一判:下列各直線是不是圓的切線?如果不是,請說明為什么?O.AO.ABAO(1)(2)(3)(1)不是,因為沒有垂直.(2),(3)不是,因為沒有經(jīng)過半徑的外端點A.

在此定理中,“經(jīng)過半徑的外端”和“垂直于這條半徑”,兩個條件缺一不可,否則就不是圓的切線.注意講授新課判斷一條直線是一個圓的切線有三個方法:1.定義法:直線和圓只有一個公共點時,我們說這條直線是圓的切線;2.數(shù)量關(guān)系法:圓心到這條直線的距離等于半徑(即d=r)時,直線與圓相切;3.判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.lAlOlrd要點歸納講授新課

如圖,∠ABC=45°,直線AB是☉O上的直徑,點A,且AB=AC.求證:AC是☉O的切線.解析:直線AC經(jīng)過半徑的一端,因此只要證OA垂直于AB即可.證明:∵AB=AC,∠ABC=45°,∴∠ACB=∠ABC=45°.

∴∠BAC=180°-∠ABC-ACB=90°.

∵AB是☉O的直徑,∴AC是☉O的切線.AOCB講授新課例題1

已知:直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB.求證:直線AB是⊙O的切線.OBAC分析:由于AB過⊙O上的點C,所以連接OC,只要證明AB⊥OC即可.

證明:連接OC(如圖).∵OA=OB,CA=CB,

∴OC是等腰三角形OAB底邊AB上的中線.

∴AB⊥OC.

∵OC是⊙O的半徑,∴AB是⊙O的切線.例題2講授新課如圖,已知直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB求證:直線AB是⊙O的切線.CBAO如圖,OA=OB=5,AB=8,⊙O的直徑為6.求證:直線AB是⊙O的切線.CBAO對比思考?作垂直連接方法歸納講授新課(1)有交點,連半徑,證垂直;(2)無交點,作垂直,證半徑.證切線時輔助線的添加方法有切線時常用輔助線添加方法

見切點,連半徑,得垂直.切線的其他重要結(jié)論(1)經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點;(2)經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心.要點歸納講授新課思考:如圖,如果直線l是⊙O

的切線,點A為切點,那么OA與l垂直嗎?AlO∵直線l是⊙O

的切線,A是切點,∴直線l⊥OA.切線性質(zhì)

圓的切線垂直于經(jīng)過切點的半徑.應(yīng)用格式2知識點

切線的性質(zhì)講授新課小亮的理由是:直徑AB與直線CD要么垂直,要么不垂直.(1)假設(shè)AB與CD不垂直,過點O作一條直徑垂直于CD,垂足為M,(2)則OM<OA,即圓心到直線CD的距離小于⊙O的半徑,因此,CD與⊙O相交.這與已知條件“直線與⊙O相切”相矛盾.CDBOA(3)所以AB與CD垂直.M證法1:反證法.性質(zhì)定理的證明講授新課CDOA證法2:構(gòu)造法.作出小⊙O的同心圓大⊙O,CD切小⊙O于點A,且A點為CD的中點,連接OA,根據(jù)垂徑定理,則CD⊥OA,即圓的切線垂直于經(jīng)過切點的半徑.講授新課

如圖,已知AB為⊙O的直徑,點D在AB的延長線上,

BD=OB,點C在圓上,∠CAB=30°.

求證:DC是⊙O的切線.

因為點C在圓上,所以連接OC,

證明OC⊥CD,而要證OC⊥CD,

只需證△OCD為直角三角形.導(dǎo)引:練一練講授新課證明:如圖,連接OC,BC.∵AB為⊙O的直徑,∴∠ACB=90°.∵∠CAB=30°,∴BC=AB=OB.又∵BD=OB,∴BC=BD=OB=OD,∴∠OCD=90°.∴DC是⊙O的切線.講授新課

利用切線的性質(zhì)解題時,常需連接輔助線,一般連接圓心與切點,構(gòu)造直角三角形,再利用直角三角形的相關(guān)性質(zhì)解題.方法總結(jié)講授新課

如圖,PA為⊙O的切線,A為切點.直線PO與⊙O交于B、C兩點,∠P=30°,連接AO、AB、AC.(1)求證:△ACB≌△APO;(2)若AP=,求⊙O的半徑.解析:(1)根據(jù)已知條件我們易得∠CAB=∠PAO=90°,由∠P=30°可得出∠AOP=60°,則∠C=30°=∠P,即AC=AP;這樣就湊齊了角邊角,可證得△ACB≌△APO;OABPC(2)由已知條件可得△AOP為直角三角形,因此可以通過解直角三角形求出半徑OA的長.例題3講授新課(1)求證:△ACB≌△APO;OABPC在△ACB和△APO中,∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,∴△ACB≌△APO.(1)證明:∵PA為⊙O的切線,A為切點,又∵∠P=30°,∴∠AOB=60°,又OA=OB,∴△AOB為等邊三角形.∴AB=AO,∠ABO=60°.又∵BC為⊙O的直徑,∴∠BAC=90°.∴∠OAP=90°.講授新課(2)若AP=,求⊙O的半徑.OABPC∴AO=1,∴CB=OP=2,∴OB=1,即⊙O的半徑為1.(2)解:在Rt△AOP中,∠P=30°,AP=,講授新課當(dāng)堂練習(xí)當(dāng)堂反饋即學(xué)即用

1.判斷下列命題是否正確.⑴經(jīng)過半徑外端的直線是圓的切線.()⑵垂直于半徑的直線是圓的切線.()

⑶過直徑的外端并且垂直于這條直徑的直線是圓的切線.()⑷和圓只有一個公共點的直線是圓的切線.()⑸過直徑一端點且垂直于直徑的直線是圓的切線.()

××√√√當(dāng)堂練習(xí)3.如圖,在☉O的內(nèi)接四邊形ABCD中,AB是直徑,∠BCD=120°,過D點的切線PD與直線AB交于點P,則∠ADP的度數(shù)為(

)A.40°B.35°C.30°D.45°2.如圖所示,A是☉O上一點,且AO=5,PO=13,AP=12,則PA與☉O的位置關(guān)系是

.APO第2題PO第3題DABC相切C當(dāng)堂練習(xí)4.如圖,⊙O切PB于點B,PB=4,PA=2,則⊙O的半徑多少?OPBA解:連接OB,則∠OBP=90°.設(shè)⊙O的半徑為r,則OA=OB=r,OP=OA+PA=2+r.在Rt△OBP中,OB2+PB2=PO2,即r2+42=(2+r)2.解得r=3,即⊙O的半徑為3.當(dāng)堂練習(xí)證明:連接OP.∵AB=AC,∴∠B=∠C.

∵OB=OP,∴∠B=∠OPB,∴∠OBP=∠C.

∴OP∥AC.

∵PE⊥AC,∴PE⊥OP.

∴PE為⊙O的切線.5.如圖,△ABC中,AB=AC,以AB為直徑的⊙O交邊BC于P,PE⊥AC于E.

求證:PE是⊙O的切線.OABCEP當(dāng)堂練習(xí)6.已知:△ABC內(nèi)接于☉O,過點A作直線EF.(1)如圖1,AB為直徑,要使EF為☉O的切線,還需添加的條件是(只需寫出兩種情況):

①_________;②_____________.(2)如圖2,AB是非直徑的弦,∠CAE=∠B,求證:EF是☉O的切線.BA⊥EF∠CAE=∠BAFEOAFEOBCBC圖1圖2當(dāng)堂練習(xí)證明:連接AO并延長交☉O于D,連接CD,則AD為☉O的直徑.∴∠D+∠DAC=90°,∵∠D與∠B同對,∴∠D=∠B,又∵∠CAE=∠B,∴∠D=∠CAE,∴∠DAC+∠EAC=90°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論