版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
SheddingLightontheLocalImpactof
Temperature
DaHoang,DuongLe,HaNguyen,andNikolaSpatafora
WP/24/178
IMFWorkingPapersdescriberesearchin
progressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.
TheviewsexpressedinIMFWorkingPapersare
thoseoftheauthor(s)anddonotnecessarily
representtheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
NAT
2024
AUG
?2024InternationalMonetaryFundWP/24/178
IMFWorkingPaper
AfricanDepartmentandInstituteforCapacityDevelopment
SheddingLightontheLocalImpactofTemperature
PreparedbyDaHoang,DuongTrungLe,HaNguyen,andNikolaSpatafora
AuthorizedfordistributionbyLucEyraudandMercedesGarcia-EscribanoAugust2024
IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicit
commentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseofthe
author(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
ABSTRACT:Weuseanewdatasettoestimatetheimpactoftemperatureoneconomicactivityatamore
geographicallyandtemporallydisaggregatedlevelthantheexistingliterature.Analyzing30-kilometergridcellsatamonthlyfrequency,temperaturehasanegative,highlystatisticallysignificant,andquantitativelylarge
effectonoutput:a1°Cincreaseinmonthlytemperatureisassociatedwitha0.77percentreductionin
nighttimelights,aproxyforlocaleconomicactivity.Theeffectsofevenatemporaryincreaseintemperaturepersistforalmostoneyearaftertheshock.Increasesintemperaturehaveanespeciallylarge,negativeimpactongrowthinpoorercountries,indicatingthattheyaremorevulnerabletotheimpactofclimatechange.
RECOMMENDEDCITATION:Hoang,Da,DuongTrungLe,HaNguyen,andNikolaSpatafora.2024.
“SheddingLightontheLocalImpactofTemperature”.IMFWorkingPaperNo.24/178,InternationalMonetaryFund,Washington,DC.
JELClassificationNumbers:
Q54;O47
Keywords:
Climatechange;temperature;economicgrowth;nighttimelights
Author’sE-MailAddress:
dhoang@,
dle6@,
hnguyen7@,
nspatafora@
IMFWORKINGPAPERSHigh-FrequencyImpactofTemperatureonEconomicActivity
INTERNATIONALMONETARYFUND3
WORKINGPAPERS
SheddingLightontheLocalImpactofTemperature
PreparedbyDaHoang,DuongTrungLe,HaNguyen,andNikolaSpatafora
1
1Theauthor(s)wouldliketothankGuyAmouzouAgbe,RobertBeyer,LucEyraud,VladimirKlyuev,MercedesGarcia-Escribano,YaoJiaxiong,ThibaultLemaire,EmanueleMassetti,LucaRicci,GregorSchwerhoff,CanSever,FilipposTagklis,andseminar
participantsattheIMFandWorldBankforvaluablecommentsandfeedback.
IMFWORKINGPAPERSHigh-FrequencyImpactofTemperatureonEconomicActivity
INTERNATIONALMONETARYFUND4
Contents
I.Introduction 5
II.DataandEmpiricalSpecification 7
II.1Data 7
II.2TheoreticalMotivation 9
II.3EmpiricalSpecification 10
ContemporaneousEffectsofTemperature 10
DynamicEffectsofTemperature 11
III.Findings 12
III.1ContemporaneousEffects 12
III.2DynamicEffects 15
IV.RobustnessChecks 16
V.Conclusions 19
References 21
Appendix 23
A.SupplementaryResults 23
B.DataDescription:theGoogleEarthEngine 29
IMFWORKINGPAPERSHigh-FrequencyImpactofTemperatureonEconomicActivity
INTERNATIONALMONETARYFUND5
I.Introduction
Climatechangeisakeyglobalchallenge.Temperaturesarerising.Droughts,floods,wildfires,andmassive
stormsareoccurringmorefrequentlywithdevastatingeffects.Understandingtheimpactofrisingtemperature,themostbasicmanifestationofclimatechange,oneconomicactivityisfundamentaltoadaptationand
mitigationefforts.
Theeconomicliteraturehasgenerallyfoundthathighertemperaturehurtseconomicactivity,particularlyforhotandpoorcountries.Theearlyliteratureexaminedtherelationshipbetweenaveragetemperatureandaggregateeconomicvariables(e.g.,SachsandWarner,1997;Gallup,Sachs,andMellinger,1999).Itfoundthathotter
countriestendtobepoorer.However,thisrelationshipmightbedrivenbyomittedvariables,suchascountryinstitutions.Themorerecentliteratureusesfluctuationsintemperaturewithinacountrytocontrolforslow-
movingcountrycharacteristics.
2
Itfindsthathighertemperaturereduceseconomicgrowthinpoorcountries(Delletal.,2012;Acevedoetal.,2020)andtheUnitedStates(Colacitoetal.,2019).Thenegativeeffectsrunthroughreducedtotalfactorproductivitygrowth(LettaandTol,2019),reducedinvestmentandlabor
productivity(Acevedoetal.,2020;KalkuhlandWenz,2020)andreducedsectoralproductivity(LeporeandFernando,2023).Burkeetal.(2015)documentthenon-lineareffectoftemperature:economicgrowthriseswithaverageannualtemperatureuntilapproximately13°C,atwhichpointtherelationshipreverses.
Theliteraturetypicallyexaminestheimpactofaverageannualtemperatureonannualeconomicoutcomes.
3
However,temperatureatagivenlocationmayvarygreatlyacrossseasons.Forinstance,temperaturein
Washington,D.C.,variesgreatlywithintheyear
(AppendixFigure1)
;theannualaverageofcloseto21°Ccan
bemisleadinglymoderatebecauseWashingtonD.C.hasacoldwinterandahotsummer.Averaging
temperatureovertheentireyearmaythereforemissimportantfluctuations,suggestingtheimportanceofcarryingouttheanalysisatafrequencythatishigherthanannual.
Similarly,averagingtemperatureoveralargegeographicarea,suchasacountryorevenaprovince,maymissimportantdetails.Bothtemperatureanditsfluctuations,andthestructureofeconomicactivityanditssensitivitytotemperature,mayvarygreatlyacrossspace.Hence,examiningtheimpactoftemperaturerequiresanalysisatamoregranularspatiallevel.
Inthispaper,weexplicitlyacknowledgethatbothtemperatureanditseffectsarehighlyheterogeneousand
localized.Tothatend,weanalyzethelinkbetweentemperatureandeconomicactivityusingdatafinely
disaggregatedacrossbothtimeandspace.Weexaminetheimpactofmonthlytemperatureoneconomic
activitywithin30-kilometerby30-kilometergridcells.Goingtothegridandmonthlylevelsallowsustoestimatetheeffectsoftemperaturemorepreciselyacrossdifferentclimatezones.Thisanalysisoffersnewinsightsto
2See,forinstance,Kahnetal.,2021;Acevedoetal.,2020;Colacitoetal.,2019;LettaandTol,2019;Cashinetal.,2017;andDelletal.,2012.SeealsothesurveysbyChangetal.(2023),Auffhammer(2018),andDelletal.(2014).
3See,forinstance,Bergetal.,2023;Newelletal.,2021;Acevedoetal.,2020;KalkuhlandWenz,2020;Burkeetal.,2015;Delletal.,2012;andDeschênesandGreenstone,2007.Akyapietal.(2022)identify,amongalargenumberofannualclimateindicators,thosemostpredictiveofeconomicdamage.
INTERNATIONALMONETARYFUND6
complementtheexistingliterature,whichfocusesonannualaveragetemperatureandeconomicoutcomesatthecountrylevel.
4
Granularanalysescomewiththeirchallenges.Thefirstandmostobviousissueisthelackofeconomicdataatthelocallevel.
5
Inthispaper,localeconomicactivityisproxiedbytheintensityofnighttimelights.Alarge
literaturepointstothevalueofnighttimelightsasanindicatorforeconomicactivity(ChenandNordhaus,2011;HuandYao,2022;Martinez,2022;Asheretal.,2021).Relatedtoourpaper,Felbermayretal.(2022)examinetheimpactofstorms,excessiveprecipitation,droughts,andcoldspellsoneconomicactivityproxiedby
nighttimelights.
Overall,wefindanegativeandhighlystatisticallysignificanteffectoftemperatureonthegrowthofnighttimelights.Relatedly,ourheterogeneityanalysisindicatesthatthissignificanteffectoftemperatureisfoundalsoinlocationswithrelativelyloweraveragetemperatures.Thissignificanteffectisobservedincountriesacrosstheincomedistribution,althoughitisstatisticallylargerinpoorerareas.
Underourfullyspecifiedmodel,a1°Cincreaseinmonthly-averagetemperaturereducesthe
contemporaneousyear-over-yeargrowthofmonthlynighttimelightsby0.77percent.CommonestimatesoftheelasticityofnighttimelightswithrespecttoGDPinturnsuggestthiswouldbeassociatedwithareductionin
GDPgrowth,relativetobaseline,ofbetween0.5and0.77percentagepoints.Thismagnitudeislargerthanthefindingsoftenreportedintheliteraturethatusesmoreaggregateddata.
6
Ourestimatesaremoreinlinewith
Acevedoetal.(2020),whichreportthata1°Cincreaseinannualtemperaturereducesoutputgrowthby0.6–1.2percentagepointsforlow-andmiddle-incomecountries,althoughtheeffectislargelynotstatistically
significantforadvancedeconomies.
Akeyquestionishowtheseeffectschangeacrossdifferentclimatezones.Sofar,thereislittleevidence
becauseofthelackofgranulardata.Theliteraturetendstofindstrongereffectsinpoorercountriesandin
warmerareas(Delletal.,2012;Burkeetal.,2015,Acevedoetal.,2020).Inanearlyandinfluentialpaper,
Burkeetal.(2015),usingcountry-averageandannualaveragetemperaturedata,findunevenimpactsof
temperatureonGDPgrowth:positiveforcountrieswithaveragetemperaturebelow13°C,andnegativefor
countrieswithaveragetemperaturesabovethat.However,recentresearchsuggeststhatthisfindingofuneveneffectsisnotrobust.Forinstance,Nathetal.(2023)showthattheuneveneffectsdisappearwhencontrollingforlaggedtemperature.Thefragilefindingswithannual-andcountry-averagedataonceagainindicatethe
needformoregranularanalyses.
Animportantandrelatedissueisthattheliteratureusingaggregatedataisoftenincapableofdisentanglingtheimpactofrisingtemperatureinhotlocationsfromthatinpoorerregions;thatis,itisuncleariftheimpact
reflectsahotclimateorloweconomicdevelopment.Werevisitthisdebateinthispaper.Usingverygranulardata,wecancontrolforbothfactors.Weassignanygivengridcellinanygivenmonthtoaspecific
4Nguyen(2024)examinestheimpactofUS-countylevelseasonaltemperatureoncountry-leveljobgrowth.Thepaperfindsthatahottersummerhurtsjobgrowth,butawarmerwinterhelps.
5Someeffortshavebeenmadetocomputecell-levelcrosscellproduct(seeGeigeretal.,2017,butonlyfor10-yearincrements).
6Forexample,usingcountryaverageandannualaveragetemperaturedata,Delletal.(2012)findthatonaverage,acrossall
countries,a1°Cincreaseintemperaturereducesacountry’sannualGDPgrowthby0.3percentagepoints,andthedeclineisnotstatisticallysignificant.
INTERNATIONALMONETARYFUND7
temperaturebin,dependingonitsaveragemonthlytemperatureinthatmonth.
7
Wethenexaminetheimpactoftemperatureacrossdifferenttemperaturebins.Wefindthattheimpactoftemperatureongrowthinnighttimelightsisnegativeandstatisticallysignificant,exceptincolderareas.Inotherwords,ourfindingssupportthe
commonhypothesisthattemperatureaffectseconomicactivitymorenegativelyinrelativelywarmareas.
Atthesametime,wefindthat,whencontrollingfortemperature,incomelevelsalsomatter.Withineach
temperaturebin,wefindthattemperaturehasmorenegativeeffectsingridcellsthatarepartofalow-ormiddle-incomecountry.Ourresultthereforesuggeststhattemperaturedoeshavearelativelymoresevereeffectoneconomicactivityinpoorerareas.
Anotherimportantpointrelatestothelong-termeffectsoftemperatureoneconomicactivity.Couldatemporarytemperatureshockinducelong-lastinggrowtheffects?Toanswerthisquestion,werelyonlocalprojection
modelstoanalyzetheimpulseresponseofeconomicactivity,proxiedbynighttimelights,followinganincreaseintemperature.Wefindthatevenatemporaryshocktomonthlytemperatureshasarelativelypersistenteffectoneconomicactivity,whichremainsstatisticallysignificantforalmostayear,althoughtheeffectwanesasthetimehorizonexpands.
II.DataandEmpiricalSpecification
II.1Data
Dataforthemainanalysisvariables—temperatureandnighttimelights—arecollectedfromtwomainsources.ThetemperatureandprecipitationdataarecollectedfromtheERA5MonthlyAggregatesdataset(C3S,2017;Gorelicketal.,2017).ERA5isthefifth-generationglobalclimatereanalysisproducedbyEuropeanCentreforMedium-RangeWeatherForecasts(ECMWF).ERA5MonthlyprovidesaggregatedvaluesforeachmonthforsevenERA5climatereanalysisparameters:2mairtemperature(inKelvin,convertedtoCelsius),2mdewpointtemperature,totalprecipitation(inmeters),meansealevelpressure,surfacepressure,10mu-componentofwindand10mv-componentofwind.ThedatasetisavailablefromJanuary1979toJune2020andcoverstheentireglobewithagridcellresolutionofabout30kilometers(thatis,withdataon30-kilometerwidesquare
areas).Wecollectmonthlymaximumairtemperatureat2mandmonthlytotalprecipitation.
WecollectnighttimelightsdataasmonthlyaverageradiancecompositeimagesfromtheVisibleInfrared
ImagingRadiometerSuite(VIIRS)Day/NightBand(DNB)(Elvidgeetal.,2013).ThisversionisanalternativeconfigurationoftheVIIRSDNB,whichcorrectsforstraylight(dataneartheedgesoftheswathareexcluded).Dataimpactedbycloudcoverisalsoexcluded.And,sincetheusefulnessofnighttimelightstoproxyeconomicactivitycanbeaffectedbysnow,weexcludeobservationswheresnowcover(collectedfromERA5dataset)
exceeds50percentinamonth.
8
ThedatasetisavailablefromJanuary2014toJune2022withagridcell
7Specifically,eachgridcellinanygivencalendarmonthisassignedtooneofsixpossibletemperaturebins(lessthan0°C,0°C–10°C,10°C–20°C,20°C–30°C,30°C–35°C,andgreaterthan35°C),dependingonitsaveragetemperatureinthatmonth.Forexample,thegridcellscoveringWashingtonD.C.haveanaverageJanuarytemperaturebetween0°Cand10°C,andanaverageJunetemperaturebetween20°Cand30°C.
8Snowcoverinthepresenceofmoonlightcanmakeanareaappearverybright(Zhangetal,2023).Theresultsarealsorobusttoexcludingobservationswheresnowcoverexceeds40percentor60percent.
IMFWORKINGPAPERSHigh-FrequencyImpactofTemperatureonEconomicActivity
INTERNATIONALMONETARYFUND8
resolutionofabout500meters.Tomergetemperatureandprecipitationdatawithnighttimelightdata,we
collectthemonthlydatafortheoverlappingperiodfromJanuary2014toJune2020(78months)usinggridcellsof30kilometersby30kilometers,whichareavailableforbothdatasets.Finally,wecollectgrid-cellleveldataonpopulation(CIESINandSEDAC,2018).AlldataarecollectedviaGoogleEarthEngine.
Table1
presentssummarystatisticsofnighttimelightsandtemperature.Acrossallcell-monthobservations,
themedianyear-on-year(YoY)growthrateofnighttimelightisapproximately4percent,withsignificant
variation(94percentagepoints).Theaveragetemperatureis28.5°C.Temperaturehasincreasedby0.10°C(or0.46percent)annuallyforthetypical(median)cell.
Figure1
illustratesthespatialandseasonalvariationsintemperatureacrosstheglobe;bluetonesdenotelowertemperatures,redtoneshighertemperatures.
Table1:SummaryStatistics.
YoYGrowthinNighttimeLights
Temperature(°C)
YoYChangeinTemperature(°C)
Totalmonthly
precipitation(meter)
Observations(cell
Xmonth)
8,438,699
12,517,650
10,585,842
12,517,650
Numberofcells
197,166
200,648
200,648
200,648
Mean
0.1167
28.5310
0.1293
0.0758
Std
0.9360
9.3457
3.0510
0.1017
Min
-24.2884
-9.9429
-22.2279
0.0000
P1
-2.5226
4.8381
-8.1817
0.0000
P5
-1.1159
10.6698
-4.7809
0.0000
P25
-0.2597
22.7557
-1.4121
0.0089
Median
0.0405
30.3510
0.0980
0.0434
P75
0.4174
34.8485
1.6333
0.1001
P95
1.6501
42.0870
5.2489
0.2760
P99
3.1880
45.4611
8.6147
0.4515
Max
14.4289
53.7555
20.9840
4.0605
Note:Summarystatisticsofnighttimelight(YoYgrowth)andtemperature(inlevelandYoYchange).Unitsarepercentagepoints,exceptfortherows“Observations(cellXmonth)”and“Numberofcells”.Eachgridcellisa30-kilometerby30-kilometersquare.MonthlyobservationsfromJanuary2014toJune2020(78months).
IMFWORKINGPAPERSHigh-FrequencyImpactofTemperatureonEconomicActivity
INTERNATIONALMONETARYFUND9
Figure1:Averagetemperaturebyselectedcalendarmonth,acrosstheworld.JanuaryApril
JulyOctober
Source:C3S,2017;Gorelicketal.,2017;Elvidgeetal.,2013;andIMFstaffcalculations.
Note:Themapsexcludecellswithzeroormissingnighttimelights.
II.2TheoreticalMotivation
Tostudytherelationshipbetweentemperatureandeconomicgrowth,wefirstpresentatheoreticalmotivation,basedonDelletal.(2012).Thiswillinformoursubsequentempiricalspecification.Leteconomicactivity
changeaccordingto
yt=eβTtA(1)
whereYdenoteseconomicactivity,Tdenotestemperature,Aisaproductivityterm,andtdenotesthemonth.Here,temperaturehasadirectleveleffectoneconomicactivity,representedbyβ.Inaddition,productivity
affectseconomicactivity,asrepresentedbyα.Andtemperaturemayalsoaffectannualproductivitygrowth:
log(At)?log(At?12)=g+λTt+σTt?12(2)
whereλdenotestheshort-runeffectoftemperatureonproductivitygrowth,and(λ+σ)thelong-runeffect.Thespecificationallowsforeitherpositiveornegativeeffectsoftemperatureonproductivitygrowth.Takinglogs
andyear-over-yearfirstdifferencesof
(1)
,andcombiningwith
(2)
,yields
log(yt)?log(yt?12)=β(Tt?T12)+α(g+λTt+σTt?12)
IMFWORKINGPAPERSHigh-FrequencyImpactofTemperatureonEconomicActivity
INTERNATIONALMONETARYFUND10
?log(yt)?log(yt?12)=αg+(β+αλ)Tt+(ασ?β)Tt?12(3)
So,temperatureaffectsthegrowthrateofoutput;theshort-rungrowtheffectisgivenby(β+αλ),andthelong-runeffectby[α(λ+σ)].Equation
(3)
formsthebasisfortheempiricalspecification.
II.3EmpiricalSpecification
ContemporaneousEffectsofTemperature
Inlinewiththetheoreticalmotivation,themainempiricalregressiontakestheform
log(Lc,t)?log(Lc,t?12)=β0+β1Tc,t+β2Tc,t?12+σ1pc,t+FEt+FEc,m+Ec,t(4)
whereLdenotesnighttimelights,Tdenotestheaveragetemperatureofthemonth,cindexesthe(30-kilometerby30-kilometer)gridcells,andtdenotesthemonth.Changesinnighttimelightsproxyforchangesineconomicactivity.FEtaremonth-specificfixedeffectsthatcaptureglobalfactorsaffectingthegrowthofnighttimelightsacrossallcellsinaparticularmonth.FEc,marecell–by–calendar-monthfixedeffects,whichcontrolsforthecalendar-month-specificgrowthofnighttimelightsforeachgridcell.
9
Theyaddressdifferentseasonalityfordifferentcells.Forinstance,theyhandlethefactthatthenorthernandsouthernhemisphereshaveoppositeseasons,orthatnighttimelightsmaygrowespeciallyfastduringsummermonthsforcellslocatedincoldclimatezones.Ourpreferredspecificationfurthercontrolsforprecipitationasacontemporaneouscovariateclimatefactor,wherepc,tdenotesavectorcomprisingtwodummiesindicatingwhetheragridcellexperiencedabnormallyhigh(onestandarddeviationabovethelong-termaverageprecipitationinaparticularcalendarmonth)orlow(onestandarddeviationbelow)inmontht.
10
Weuseequation
(4)
toanalyzethecontemporaneouseffectoftemperatureontheyear-over-yeargrowthofnighttimelights.Ttisthemainexplanatoryvariable,capturingmontht’stemperature.Thekeycoefficientofinterestisβ1.
11
Weviewtheestimatedeffectoflocaltemperatureonlocaleconomicactivityascausal,sincelocaltemperatureisbestviewedasexogenouswithrespecttolocaleconomicactivity.Inparticular,thereislittleriskofreversecausalityfromlocaleconomicactivitytolocaltemperature.
12
ThecontrolvariableTt?12capturesthe
9Essentially,FEc,mincludes12fixedeffectspergridcell,eachcorrespondingtoacalendarmonthinayear.
10Morespecifically,theprecipitationdummiesaredefinedasfollow:
High_Pc,t=1ifpc,t>average(pc,t)+std(pc,t),and=0otherwise;andLow_Pc,t=1ifpc,t<average(pc,t)?std(pc,t),and=0otherwise;
wherepc,tdenotesthetotalprecipitationlevelofthemonth,andbothaveragesandstandarddeviationsarecell–calendar-monthspecific.
11Whichcorrespondstotheparameters(β+αλ)inequation(3).
12Inprinciple,someomitted,climate-relatedvariablemightbothbesystematicallycorrelatedwithlocaltemperature,andaffectlocaleconomicactivity.Themostobvioussuchvariableisprecipitation;asdiscussed,wethereforecontrolforthis.
IMFWORKINGPAPERSHigh-FrequencyImpactofTemperatureonEconomicActivity
INTERNATIONALMONETARYFUND11
impactoftemperatureinthesamemonthofthepreviousyear.Standarderrorsareclusteredattheprovince(specifically,first-tieradministrative)levelineachcountrywheredataareavailable.
Wethenextendtheanalysis,investigatingseparatelytheimpactofpositiveandnegativechangesintemperature:
log(Lc,t)?log(Lc,t?12)=β0+β1Tc,t+β2Tc,t?12+y1psitivec,t+y2Tc,t×psitivec,t+σ1pc,t+FEt+FEc,m+Ec,t(5)
wheretheindicatorPositivec,t=1if(Tc,t?Tc,t?12)≥0,and=0otherwise.Here,thecontemporaneouseffectoftemperatureontheyear-over-yeargrowthofnighttimelightsisgivenbyβ1fornegativetemperatureshocks,and(β1+y2)forpositivetemperatureshocks.
Inananalogousmanner,wealsoinvestigateseparatelytheimpactoflargepositiveandlargenegativechangesintemperature,definedasthosechangesthataremorethanonestandarddeviationawayfromtheaveragetemperaturechange:
log(Lc,t)?log(Lc,t?12)=β0+β1Tc,t+β2Tc,t?12+δ1Tc,t×Hig?psitivec,t+δ2Tc,t×Hig?Negativec,t+μ1Hig?psitivec,t+μ2Hig?Negativec,t+σ1pc,t+FEt+FEc,m+Ec,t(6)
wheretheindicators
HighPositivec,t=1if(Tc,t?Tc,t?12)>average(Tc,t?Tc,t?12)+std(Tc,t?Tc,t?12),and=0otherwise;and
HighNegativec,t=1if(Tc,t?Tc,t?12)<average(Tc,t?Tc,t?12)?std(Tc,t?Tc,t?12),and=0otherwise;andbothaveragesandstandarddeviationsarecell-specific.
DynamicEffectsofTemperature
Wealsowanttoexaminethedynamicimpactoftemperatureonnighttimelights,includingthelong-runeffect.Tothisend,weemployaflexibleempiricalspecification,adoptingthelocallinearprojectionsmethodology
(Jordà,2005).Impulseresponseanalysisusinglocalprojectionshasbecomeapopularalternativetothe
traditionalstructuralvectorautoregressive(SVAR)models.Inparticular,localprojectionsofferthefollowing
benefitsoverthetraditionalapproach:(i)theyaremorerobusttomisspecification,sincetheydonotconstraintheshapeofimpulseresponsefunctions;(ii)theycanaccommodatenonlinearandmoreflexiblespecifications;
and(iii)theyareeasiertoimplement,becausetheyonlyrequirestandardlinearregressions(Jordà,2005).Ourspecificationtakestheform:
log(Lc,t+?)?log(Lc,t?1)=αc,?+β?Tc,t+Xc,t+σ1pc,t+FEt+FEc,m+Ec,t(7)
wherehdenotestheprojectionhorizon,andlog(Lc,t+?)?log(Lc,t?1)capturesthegrowthrateofnigh
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車租賃合同范本
- 2025年競(jìng)業(yè)禁止合同協(xié)議范本
- 地鐵租賃合同
- 比賽用品租賃合同
- 垃圾壓縮站運(yùn)輸合同
- 別墅室內(nèi)設(shè)計(jì)施工合同
- 住宅裝修智能家居系統(tǒng)合同
- 咖啡連鎖店裝修合同書
- 礦石運(yùn)輸質(zhì)量保證合同
- 咖啡館翻新設(shè)計(jì)合同
- 2024年同等學(xué)力人員申請(qǐng)碩士學(xué)位英語試卷與參考答案
- 臨床用血管理培訓(xùn)
- 介入手術(shù)室護(hù)理風(fēng)險(xiǎn)
- 小學(xué)一年級(jí)數(shù)學(xué)20以內(nèi)的口算題(可直接打印A4)
- 春季安全行車教育培訓(xùn)
- 2024年6月第3套英語六級(jí)真題
- 2024年江蘇省公務(wù)員錄用考試《行測(cè)》題(A類)
- 2024年10月時(shí)政100題(附答案)
- 江蘇省無錫市2024年中考數(shù)學(xué)試卷(含答案)
- 2024年保密知識(shí)測(cè)試試題及答案(奪冠)
- 北師大版八年級(jí)下冊(cè)因式分解(分組分解法)100題及答案
評(píng)論
0/150
提交評(píng)論