




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆湖北襄陽宜城市朱市鎮(zhèn)第二中學中考數(shù)學全真模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.2.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.50° C.60° D.30°3.下列運算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a64.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現(xiàn)已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設乘公交車平均每小時走x千米,根據(jù)題意可列方程為()A. B. C. D.5.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元6.方程2x2﹣x﹣3=0的兩個根為()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=37.下列運算正確的是()A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x38.如圖,平行四邊形ABCD中,E,F(xiàn)分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.9.在如圖的計算程序中,y與x之間的函數(shù)關系所對應的圖象大致是()A. B. C. D.10.如圖所示的幾何體的主視圖是()A. B. C. D.11.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.12.根據(jù)物理學家波義耳1662年的研究結果:在溫度不變的情況下,氣球內氣體的壓強p(pa)與它的體積v(m3)的乘積是一個常數(shù)k,即pv=k(k為常數(shù),k>0),下列圖象能正確反映p與v之間函數(shù)關系的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知關于x的方程x214.計算:___.15.關于x的一元二次方程x2+4x﹣k=0有實數(shù)根,則k的取值范圍是__________.16.圓錐的底面半徑是4cm,母線長是5cm,則圓錐的側面積等于_____cm1.17.如圖所示,邊長為1的小正方形構成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正切值等于__________.18.反比例函數(shù)的圖象經(jīng)過點(﹣3,2),則k的值是_____.當x大于0時,y隨x的增大而_____.(填增大或減?。┤?、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)小麗和哥哥小明分別從家和圖書館同時出發(fā),沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續(xù)騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發(fā)的時間x(min)之間的函數(shù)圖象如圖所示:(1)求兩人相遇時小明離家的距離;(2)求小麗離距離圖書館500m時所用的時間.20.(6分)已知反比例函數(shù)的圖象經(jīng)過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當y1﹣y2=4時,求m的值;(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).21.(6分)某市對城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設施進行全面更新改造,根據(jù)市政建設的需要,需在35天內完成工程.現(xiàn)有甲、乙兩個工程隊有意承包這項工程,經(jīng)調查知道,乙工程隊單獨完成此項工程的時間是甲工程隊單獨完成此項工程時間的2倍,若甲、乙兩工程隊合作,只需10天完成.甲、乙兩個工程隊單獨完成此項工程各需多少天?若甲工程隊每天的工程費用是4萬元,乙工程隊每天的工程費用是2.5萬元,請你設計一種方案,既能按時完工,又能使工程費用最少.22.(8分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.23.(8分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達式.足球第一次落地點距守門員多少米?(?。┻\動員乙要搶到第二個落點,他應再向前跑多少米?24.(10分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.25.(10分)某學校后勤人員到一家文具店給九年級的同學購買考試用文具包,文具店規(guī)定一次購買400個以上,可享受8折優(yōu)惠.若給九年級學生每人購買一個,不能享受8折優(yōu)惠,需付款1936元;若多買88個,就可享受8折優(yōu)惠,同樣只需付款1936元.請問該學校九年級學生有多少人?26.(12分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側)連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.27.(12分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側),拋物線的頂點為C,直線y=x+3與x軸交于點D.(1)求拋物線的頂點C的坐標及A,B兩點的坐標;(2)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內,求t的取值范圍;(3)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當△PAB的面積是△ABC面積的2倍時,求m,n的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
首先證明△ABF≌△DEA得到BF=AE;設AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質:正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質.會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.2、A【解析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.3、D【解析】
根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進行計算即可.【詳解】A、(a2)5=a10,故原題計算錯誤;B、(x﹣1)2=x2﹣2x+1,故原題計算錯誤;C、3a2b和3ab2不是同類項,不能合并,故原題計算錯誤;D、a2?a4=a6,故原題計算正確;故選:D.【點睛】此題主要考查了冪的乘方、完全平方公式、合并同類項和同底數(shù)冪的乘法,關鍵是掌握各計算法則.4、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設乘公交車平均每小時走x千米,根據(jù)題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關鍵是正確找出題目中的相等關系,用代數(shù)式表示出相等關系中的各個部分,列出方程即可.5、D【解析】
設y與x之間的函數(shù)關系式為y=kπx2,由待定系數(shù)法就可以求出解析式,再求出x=6時y的值即可得.【詳解】解:根據(jù)題意設y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【點睛】本題考查了二次函數(shù)的應用,解答時求出函數(shù)的解析式是關鍵.6、A【解析】
利用因式分解法解方程即可.【詳解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故選A.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).7、B【解析】分析:根據(jù)完全平方公式、負整數(shù)指數(shù)冪,合并同類項以及同底數(shù)冪的除法的運算法則進行計算即可判斷出結果.詳解:A.(a﹣3)2=a2﹣6a+9,故該選項錯誤;B.()﹣1=2,故該選項正確;C.x與y不是同類項,不能合并,故該選項錯誤;D.x6÷x2=x6-2=x4,故該選項錯誤.故選B.點睛:可不是主要考查了完全平方公式、負整數(shù)指數(shù)冪,合并同類項以及同度數(shù)冪的除法的運算,熟記它們的運算法則是解題的關鍵.8、B【解析】
由平行四邊形性質得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數(shù)求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據(jù)勾股定理得,CE==,∴AB=CE=,故選B.【點睛】本題考查了平行四邊形的性質和判定、平行線的性質,三角函數(shù)的運用;熟練掌握平行四邊形的性質,勾股定理,判斷出AB=CE是解決問題的關鍵.9、A【解析】函數(shù)→一次函數(shù)的圖像及性質10、A【解析】
找到從正面看所得到的圖形即可.【詳解】解:從正面可看到從左往右2列一個長方形和一個小正方形,故選A.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.11、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.12、C【解析】【分析】根據(jù)題意有:pv=k(k為常數(shù),k>0),故p與v之間的函數(shù)圖象為反比例函數(shù),且根據(jù)實際意義p、v都大于0,由此即可得.【詳解】∵pv=k(k為常數(shù),k>0)∴p=(p>0,v>0,k>0),故選C.【點睛】本題考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用實際意義確定其所在的象限.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m<9【解析】試題分析:若一元二次方程有兩個不相等的實數(shù)根,則根的判別式△=b2﹣4ac>0,建立關于m的不等式,解不等式即可求出m的取值范圍.∵關于x的方程x2﹣6x+m=0有兩個不相等的實數(shù)根,∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0,解得:m<1.考點:根的判別式.14、【解析】
直接利用負指數(shù)冪的性質以及零指數(shù)冪的性質分別化簡得出答案.【詳解】原式.故答案為.【點睛】本題考查了實數(shù)運算,正確化簡各數(shù)是解題的關鍵.15、k≥﹣1【解析】分析:根據(jù)方程的系數(shù)結合根的判別式△≥0,即可得出關于k的一元一次不等式,解之即可得出結論.詳解:∵關于x的一元二次方程x2+1x-k=0有實數(shù)根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案為k≥-1.點睛:本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關鍵.16、10π【解析】
解:根據(jù)圓錐的側面積公式可得這個圓錐的側面積=?1π?4?5=10π(cm1).故答案為:10π【點睛】本題考查圓錐的計算.17、【解析】
根據(jù)同弧或等弧所對的圓周角相等來求解.【詳解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故選D.【點睛】本題利用了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念求解.18、﹣6增大【解析】
∵反比例函數(shù)的圖象經(jīng)過點(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,則y隨x的增大而增大.故答案為﹣6;增大.【點睛】本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質:(1)當k>0時,函數(shù)圖象在一,三象限,在每個象限內,y隨x的增大而減?。唬?)當k<0時,函數(shù)圖象在二,四象限,在每個象限內,y隨x的增大而增大.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)兩人相遇時小明離家的距離為1500米;(2)小麗離距離圖書館500m時所用的時間為分.【解析】
(1)根據(jù)題意得出小明的速度,進而得出得出小明離家的距離;(2)由(1)的結論得出小麗步行的速度,再列方程解答即可.【詳解】解:(1)根據(jù)題意可得小明的速度為:4500÷(10+5)=300(米/分),300×5=1500(米),∴兩人相遇時小明離家的距離為1500米;(2)小麗步行的速度為:(4500﹣1500)÷(35﹣10)=120(米/分),設小麗離距離圖書館500m時所用的時間為x分,根據(jù)題意得,1500+120(x﹣10)=4500﹣500,解得x=.答:小麗離距離圖書館500m時所用的時間為分.【點睛】本題由函數(shù)圖像獲取信息,以及一元一次方程的應用,由函數(shù)圖像正確獲取信息是解答本題的關鍵.20、(1)m=1;(2)點P坐標為(﹣2m,1)或(6m,1).【解析】
(1)先根據(jù)反比例函數(shù)的圖象經(jīng)過點A(﹣4,﹣3),利用待定系數(shù)法求出反比例函數(shù)的解析式為y=12x,再由反比例函數(shù)圖象上點的坐標特征得出y1=122m=6m,y2=126m=2m,然后根據(jù)y1﹣y2(2)設BD與x軸交于點E.根據(jù)三角形PBD的面積是8列出方程12?4【詳解】解:(1)設反比例函數(shù)的解析式為y=kx∵反比例函數(shù)的圖象經(jīng)過點A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函數(shù)的解析式為y=12x∵反比例函數(shù)的圖象經(jīng)過點B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,經(jīng)檢驗,m=1是原方程的解,故m的值是1;(2)設BD與x軸交于點E,∵點B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面積是8,∴12∴12?4∴PE=4m,∵E(2m,1),點P在x軸上,∴點P坐標為(﹣2m,1)或(6m,1).【點睛】本題考查了待定系數(shù)法求反比例函數(shù)的解析式,反比例函數(shù)圖象上點的坐標特征以及三角形的面積,正確求出雙曲線的解析式是解題的關鍵.21、(1)甲工程隊單獨完成該工程需15天,則乙工程隊單獨完成該工程需30天;(2)應該選擇甲工程隊承包該項工程.【解析】
(1)設甲工程隊單獨完成該工程需x天,則乙工程隊單獨完成該工程需2x天.再根據(jù)“甲、乙兩隊合作完成工程需要10天”,列出方程解決問題;
(2)首先根據(jù)(1)中的結果,從而可知符合要求的施工方案有三種:方案一:由甲工程隊單獨完成;方案二:由乙工程隊單獨完成;方案三:由甲乙兩隊合作完成.針對每一種情況,分別計算出所需的工程費用.【詳解】(1)設甲工程隊單獨完成該工程需天,則乙工程隊單獨完成該工程需天.根據(jù)題意得:方程兩邊同乘以,得解得:經(jīng)檢驗,是原方程的解.∴當時,.答:甲工程隊單獨完成該工程需15天,則乙工程隊單獨完成該工程需30天.(2)因為甲乙兩工程隊均能在規(guī)定的35天內單獨完成,所以有如下三種方案:方案一:由甲工程隊單獨完成.所需費用為:(萬元);方案二:由乙工程隊單獨完成.所需費用為:(萬元);方案三:由甲乙兩隊合作完成.所需費用為:(萬元).∵∴應該選擇甲工程隊承包該項工程.【點睛】本題考查分式方程在工程問題中的應用.分析題意,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.22、(1)-1;(2).【解析】
(1)根據(jù)零指數(shù)冪的意義、特殊角的銳角三角函數(shù)以及負整數(shù)指數(shù)冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當a=﹣2+時,原式==.【點睛】本題考查了學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.23、(1)(或)(2)足球第一次落地距守門員約13米.(3)他應再向前跑17米.【解析】
(1)依題意代入x的值可得拋物線的表達式.(2)令y=0可求出x的兩個值,再按實際情況篩選.(3)本題有多種解法.如圖可得第二次足球彈出后的距離為CD,相當于將拋物線AEMFC向下平移了2個單位可得解得x的值即可知道CD、BD.【詳解】解:(1)如圖,設第一次落地時,拋物線的表達式為由已知:當時即表達式為(或)(2)令(舍去).足球第一次落地距守門員約13米.(3)解法一:如圖,第二次足球彈出后的距離為根據(jù)題意:(即相當于將拋物線向下平移了2個單位)解得(米).答:他應再向前跑17米.24、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.試題解析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質;2.全等三角形的判定;3.平移的性質.25、1人【解析】解:設九年級學生有x人,根據(jù)題意,列方程得:,整理得0.8(x+88)=x,解之得x=1.經(jīng)檢驗x=1是原方程的解.答:這個學校九年級學生有1人.設九年級學生有x人,根據(jù)“給九年級學生每人購買一個,不能享受8折優(yōu)惠,需付款1936元”可得每個文具包的花費是:元,根據(jù)“若多買88個,就可享受8折優(yōu)惠,同樣只需付款1936元”可得每個文具包的花費是:,根據(jù)題意可得方程,解方程即可.26、(1)證明見解析;(2)+;(3)的值不變,.【解析】
(1)根據(jù)等腰三角形的性質得到∠ABC=45°,∠ACB=90°,根據(jù)圓周角定理得到∠APB=90°,得到∠APC=∠D,根據(jù)平行線的判定定理證明;(2)作BH⊥CP,根據(jù)正弦、余弦的定義分別求出CH、PH,計算即可;(3)證明△CBP∽△ABD,根據(jù)相似三角形的性質解答.【詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【點睛】本題考查的是圓周角定理、相似三角形的判定和性質以及銳角三角函數(shù)的概念,掌握圓周角定理、相似三角形的判定定理和性質定理是解題的關鍵.27、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點式即可求出點C的坐標,聯(lián)立拋物線與直線的解析式即可求出A、B的坐標.(Ⅱ)由題意可知:新拋物線的頂點坐標為(2﹣t,1),然后求出直線AC的解析式后,將點E的坐標分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點E在△DAC內,求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商務談判書合同協(xié)議
- 2025標準版合同范本下載
- 2025技術開發(fā)合同撰寫關鍵要點
- 快遞轉承包合同協(xié)議
- 正規(guī)裝修合同協(xié)議書范本
- 櫻桃苗木買賣合同協(xié)議
- 員工技能培訓協(xié)議合同
- 比賽獎勵協(xié)議書模板
- 2025年度城市基礎設施建設項目借款合同書
- 員工輔導協(xié)議書范本
- 糧食熏蒸培訓課件
- 《基于Spring Boot的學生信息管理系統(tǒng)的設計與實現(xiàn)》
- 砂石場生產(chǎn)線承包合同
- 2024秋國家開放大學《四史通講》形考作業(yè)、期末大作業(yè)試卷ABC參考答案
- 遼寧省第二屆職業(yè)技能大賽(健康照護賽項)理論參考試題及答案
- GB/T 44770-2024智能火電廠技術要求
- 《塑料材質食品相關產(chǎn)品質量安全風險管控清單》
- 中國手術部位感染預防指南
- 人教版中職數(shù)學拓展模塊一:6.1.1復數(shù)的相關概念課件
- 街道辦消防安全知識培訓課件
- 艦艇損害管制與艦艇損害管制訓練
評論
0/150
提交評論