2022屆山東省日照市五蓮縣重點中學(xué)中考三模數(shù)學(xué)試題含解析_第1頁
2022屆山東省日照市五蓮縣重點中學(xué)中考三模數(shù)學(xué)試題含解析_第2頁
2022屆山東省日照市五蓮縣重點中學(xué)中考三模數(shù)學(xué)試題含解析_第3頁
2022屆山東省日照市五蓮縣重點中學(xué)中考三模數(shù)學(xué)試題含解析_第4頁
2022屆山東省日照市五蓮縣重點中學(xué)中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022屆山東省日照市五蓮縣重點中學(xué)中考三模數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.2.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.3.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米4.輪船沿江從港順流行駛到港,比從港返回港少用3小時,若船速為26千米/時,水速為2千米/時,求港和港相距多少千米.設(shè)港和港相距千米.根據(jù)題意,可列出的方程是().A. B.C. D.5.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′,連接CC′.若∠CC′B′=32°,則∠B的大小是()A.32° B.64° C.77° D.87°6.的倒數(shù)是()A. B.3 C. D.7.下列命題是假命題的是()A.有一個外角是120°的等腰三角形是等邊三角形B.等邊三角形有3條對稱軸C.有兩邊和一角對應(yīng)相等的兩個三角形全等D.有一邊對應(yīng)相等的兩個等邊三角形全等8.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.9.如圖所示的工件,其俯視圖是()A. B. C. D.10.一次數(shù)學(xué)測試后,隨機(jī)抽取九年級某班5名學(xué)生的成績?nèi)缦拢?1,78,1,85,1.關(guān)于這組數(shù)據(jù)說法錯誤的是()A.極差是20 B.中位數(shù)是91 C.眾數(shù)是1 D.平均數(shù)是9111.葉綠體是植物進(jìn)行光合作用的場所,葉綠體DNA最早發(fā)現(xiàn)于衣藻葉綠體,長約0.00005米.其中,0.00005用科學(xué)記數(shù)法表示為()A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣312.如圖,矩形是由三個全等矩形拼成的,與,,,,分別交于點,設(shè),,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.12二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個正方形AOBC各頂點的坐標(biāo)分別為A(0,3),O(0,0),B(3,0),C(3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標(biāo)為_____.14.寫出一個平面直角坐標(biāo)系中第三象限內(nèi)點的坐標(biāo):(__________)15.如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標(biāo)為(6,0),⊙P的半徑為,則點P的坐標(biāo)為_______.16.用一直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽可以制成一個不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).17.分解因式:_______________.18.無錫大劇院演出歌劇時,信號經(jīng)電波轉(zhuǎn)送,收音機(jī)前的北京觀眾經(jīng)過0.005秒以聽到,這個數(shù)據(jù)用科學(xué)記數(shù)法可以表示為_____秒.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:(1)甲登山上升的速度是每分鐘米,乙在地時距地面的高度為米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度(米)與登山時間(分)之間的函數(shù)關(guān)系式.(3)登山多長時間時,甲、乙兩人距地面的高度差為50米?20.(6分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.21.(6分)每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮E.其他根據(jù)以上統(tǒng)計圖,解答下列問題:(1)本次接受調(diào)查的市民共有人;(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是;(3)請補全條形統(tǒng)計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).22.(8分)已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結(jié)果精確到1米).23.(8分)計算:解方程:24.(10分)解不等式組請結(jié)合題意填空,完成本題的解答.(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式①和②的解集在數(shù)軸上表示出來:(IV)原不等式組的解集為.25.(10分)(2016山東省煙臺市)某中學(xué)廣場上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)26.(12分)如圖,已知,.求證.27.(12分)為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計劃為學(xué)校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.求A,B兩種品牌的足球的單價.求該校購買20個A品牌的足球和2個B品牌的足球的總費用.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

首先證明△ABF≌△DEA得到BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.2、B【解析】

先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設(shè)CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.3、D【解析】

在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點睛】本題考查了解直角三角形的應(yīng)用--仰角、俯角問題,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.4、A【解析】

通過題意先計算順流行駛的速度為26+2=28千米/時,逆流行駛的速度為:26-2=24千米/時.根據(jù)“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時”,得出等量關(guān)系,據(jù)此列出方程即可.【詳解】解:設(shè)A港和B港相距x千米,可得方程:故選:A.【點睛】本題考查了由實際問題抽象出一元一次方程,抓住關(guān)鍵描述語,找到等量關(guān)系是解決問題的關(guān)鍵.順?biāo)俣?水流速度+靜水速度,逆水速度=靜水速度-水流速度.5、C【解析】試題分析:由旋轉(zhuǎn)的性質(zhì)可知,AC=AC′,∵∠CAC′=90°,可知△CAC′為等腰直角三角形,則∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故選C.考點:旋轉(zhuǎn)的性質(zhì).6、A【解析】

解:的倒數(shù)是.故選A.【點睛】本題考查倒數(shù),掌握概念正確計算是解題關(guān)鍵.7、C【解析】解:A.外角為120°,則相鄰的內(nèi)角為60°,根據(jù)有一個角為60°的等腰三角形是等邊三角形可以判斷,故A選項正確;B.等邊三角形有3條對稱軸,故B選項正確;C.當(dāng)兩個三角形中兩邊及一角對應(yīng)相等時,其中如果角是這兩邊的夾角時,可用SAS來判定兩個三角形全等,如果角是其中一邊的對角時,則可不能判定這兩個三角形全等,故此選項錯誤;D.利用SSS.可以判定三角形全等.故D選項正確;故選C.8、A【解析】

由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進(jìn)而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,根據(jù)方程根與系數(shù)的關(guān)系得出函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,即可進(jìn)行判斷.【詳解】點P在拋物線上,設(shè)點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.9、B【解析】試題分析:從上邊看是一個同心圓,外圓是實線,內(nèi)圓是虛線,故選B.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實線,看不見部分的輪廓線要畫成虛線.10、D【解析】

試題分析:因為極差為:1﹣78=20,所以A選項正確;從小到大排列為:78,85,91,1,1,中位數(shù)為91,所以B選項正確;因為1出現(xiàn)了兩次,最多,所以眾數(shù)是1,所以C選項正確;因為,所以D選項錯誤.故選D.考點:①眾數(shù)②中位數(shù)③平均數(shù)④極差.11、C【解析】絕對值小于1的負(fù)數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定,0.00005=,故選C.12、B【解析】

由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質(zhì),就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個全等矩形拼成的,

∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,

∴四邊形BEFD、四邊形DFGC是平行四邊形,

∴BE∥DF∥CG,

∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,

∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點睛】本題考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),相似三角形的判定與性質(zhì),三角形的面積公式,得出S2=4S1,S3=9S1是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(,)或(﹣,﹣).【解析】

分點A、B、C的對應(yīng)點在第一象限和第三象限兩種情況,根據(jù)位似變換和正方形的性質(zhì)解答可得.【詳解】如圖,①當(dāng)點A、B、C的對應(yīng)點在第一象限時,由位似比為1:2知點A′(0,)、B′(,0)、C′(,),∴該正方形的中心點的P的坐標(biāo)為(,);②當(dāng)點A、B、C的對應(yīng)點在第三象限時,由位似比為1:2知點A″(0,-)、B″(-,0)、C″(-,-),∴此時新正方形的中心點Q的坐標(biāo)為(-,-),故答案為(,)或(-,-).【點睛】本題主要考查位似變換,解題的關(guān)鍵是熟練掌握位似變換的性質(zhì)和正方形的性質(zhì).14、答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負(fù)數(shù)即可.【解析】

讓橫坐標(biāo)、縱坐標(biāo)為負(fù)數(shù)即可.【詳解】在第三象限內(nèi)點的坐標(biāo)為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標(biāo)和縱坐標(biāo)都是負(fù)數(shù)即可.15、(3,2).【解析】

過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據(jù)勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.16、174cm1.【解析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長=1×π,側(cè)面面積=×1×π×11=.點睛:利用勾股定理可求得圓錐的母線長,進(jìn)而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側(cè)面積=底面周長×母線長÷1.本題是一道綜合題,考查的知識點較多,利用了勾股定理,圓的周長公式、圓的面積公式和扇形的面積公式求解.把實際問題轉(zhuǎn)化為數(shù)學(xué)問題求解是本題的解題關(guān)鍵.17、(x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案為(x+y)(x-y).18、5【解析】

絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】0.005=5×10-1,故答案為:5×10-1.【點睛】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)10;1;(2);(3)4分鐘、9分鐘或3分鐘.【解析】

(1)根據(jù)速度=高度÷時間即可算出甲登山上升的速度;根據(jù)高度=速度×?xí)r間即可算出乙在A地時距地面的高度b的值;(2)分0≤x≤2和x≥2兩種情況,根據(jù)高度=初始高度+速度×?xí)r間即可得出y關(guān)于x的函數(shù)關(guān)系;(3)當(dāng)乙未到終點時,找出甲登山全程中y關(guān)于x的函數(shù)關(guān)系式,令二者做差等于50即可得出關(guān)于x的一元一次方程,解之即可求出x值;當(dāng)乙到達(dá)終點時,用終點的高度-甲登山全程中y關(guān)于x的函數(shù)關(guān)系式=50,即可得出關(guān)于x的一元一次方程,解之可求出x值.綜上即可得出結(jié)論.【詳解】(1)(10-100)÷20=10(米/分鐘),b=3÷1×2=1.故答案為:10;1.(2)當(dāng)0≤x≤2時,y=3x;當(dāng)x≥2時,y=1+10×3(x-2)=1x-1.當(dāng)y=1x-1=10時,x=2.∴乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為.(3)甲登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為y=10x+100(0≤x≤20).當(dāng)10x+100-(1x-1)=50時,解得:x=4;當(dāng)1x-1-(10x+100)=50時,解得:x=9;當(dāng)10-(10x+100)=50時,解得:x=3.答:登山4分鐘、9分鐘或3分鐘時,甲、乙兩人距地面的高度差為50米.【點睛】本題考查了一次函數(shù)的應(yīng)用以及解一元一次方程,解題的關(guān)鍵是:(1)根據(jù)數(shù)量關(guān)系列式計算;(2)根據(jù)高度=初始高度+速度×?xí)r間找出y關(guān)于x的函數(shù)關(guān)系式;(3)將兩函數(shù)關(guān)系式做差找出關(guān)于x的一元一次方程.20、木竿PQ的長度為3.35米.【解析】

過N點作ND⊥PQ于D,則四邊形DPMN為矩形,根據(jù)矩形的性質(zhì)得出DP,DN的長,然后根據(jù)同一時刻物高與影長成正比求出QD的長,即可得出PQ的長.試題解析:【詳解】解:過N點作ND⊥PQ于D,則四邊形DPMN為矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴,∴QD==2.25,∴PQ=QD+DP=2.25+1.1=3.35(m).答:木竿PQ的長度為3.35米.【點睛】本題考查了相似三角形的應(yīng)用,作出輔助線,根據(jù)同一時刻物高與影長成正比列出比例式是解決此題的關(guān)鍵.21、(1)2000;(2)28.8°;(3)補圖見解析;(4)36萬人.【解析】分析:(1)將A選項人數(shù)除以總?cè)藬?shù)即可得;(2)用360°乘以E選項人數(shù)所占比例可得;(3)用總?cè)藬?shù)乘以D選項人數(shù)所占百分比求得其人數(shù),據(jù)此補全圖形即可得;(4)用總?cè)藬?shù)乘以樣本中C選項人數(shù)所占百分比可得.詳解:(1)本次接受調(diào)查的市民人數(shù)為300÷15%=2000人,(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是360°×=28.8°,(3)D選項的人數(shù)為2000×25%=500,補全條形圖如下:(4)估計贊同“選育無絮楊品種,并推廣種植”的人數(shù)為90×40%=36(萬人).點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.22、(1)坡頂?shù)降孛娴木嚯x為米;移動信號發(fā)射塔的高度約為米.【解析】

延長BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由題意BH=PH.設(shè)BC=x.則x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根據(jù)tan76°=,構(gòu)建方程求出x即可.【詳解】延長BC交OP于H.∵斜坡AP的坡度為1:2.4,∴,設(shè)AD=5k,則PD=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四邊形ADHC是矩形,CH=AD=10,AC=DH,∵∠BPD=45°,∴PH=BH,設(shè)BC=x,則x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.1.解得:x≈18.7,經(jīng)檢驗x≈18.7是原方程的解.答:古塔BC的高度約為18.7米.【點睛】本題主要考查了解直角三角形,用到的知識點是勾股定理,銳角三角函數(shù),坡角與坡角等,解決本題的關(guān)鍵是作出輔助線,構(gòu)造直角三角形.23、(1)10;(2)原方程無解.【解析】

(1)原式利用二次根式性質(zhì),零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,以及特殊角的三角函數(shù)值計算即可求出值;(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】(1)原式==10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,經(jīng)檢驗:x=2是增根,原方程無解.【點睛】此題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗.24、(1)x≥;(1)x≤1;(3)答案見解析;(4)≤x≤1.【解析】

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論