2022年江西省寧都縣重點中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第1頁
2022年江西省寧都縣重點中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第2頁
2022年江西省寧都縣重點中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第3頁
2022年江西省寧都縣重點中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第4頁
2022年江西省寧都縣重點中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年江西省寧都縣重點中學(xué)中考數(shù)學(xué)最后一模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知拋物線y=x2+bx+c的對稱軸為x=2,若關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內(nèi)有兩個相等的實數(shù)根,則c的取值范圍是(

)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=42.計算(﹣ab2)3的結(jié)果是()A.﹣3ab2 B.a(chǎn)3b6 C.﹣a3b5 D.﹣a3b63.計算(﹣3)﹣(﹣6)的結(jié)果等于()A.3B.﹣3C.9D.184.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.5.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示cosα的值,錯誤的是(

)A. B. C. D.6.在下列條件中,能夠判定一個四邊形是平行四邊形的是()A.一組對邊平行,另一組對邊相等B.一組對邊相等,一組對角相等C.一組對邊平行,一條對角線平分另一條對角線D.一組對邊相等,一條對角線平分另一條對角線7.2016的相反數(shù)是()A. B. C. D.8.世界上最小的鳥是生活在古巴的吸蜜蜂鳥,它的質(zhì)量約為0.056盎司.將0.056用科學(xué)記數(shù)法表示為()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣19.如圖,小明從A處出發(fā)沿北偏西30°方向行走至B處,又沿南偏西50°方向行走至C處,此時再沿與出發(fā)時一致的方向行走至D處,則∠BCD的度數(shù)為()A.100° B.80° C.50° D.20°10.北京故宮的占地面積達(dá)到720000平方米,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為()A.0.72×106平方米 B.7.2×106平方米C.72×104平方米 D.7.2×105平方米11.按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數(shù)是()①△ABC與△DEF是位似圖形

②△ABC與△DEF是相似圖形③△ABC與△DEF的周長比為1:2

④△ABC與△DEF的面積比為4:1.A.1 B.2 C.3 D.412.若一個凸多邊形的內(nèi)角和為720°,則這個多邊形的邊數(shù)為A.4 B.5 C.6 D.7二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC是⊙O的內(nèi)接三角形,AD是⊙O的直徑,∠ABC=50°,則∠CAD=________

.14.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是_____.15.如圖所示,四邊形ABCD中,,對角線AC、BD交于點E,且,,若,,則CE的長為_____.16.比較大?。?_________(填<,>或=).17.如果a+b=2,那么代數(shù)式(a﹣)÷的值是______.18.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(m,n)在函數(shù)圖象上的概率是.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.20.(6分)已知關(guān)于x的方程x2﹣6mx+9m2﹣9=1.(1)求證:此方程有兩個不相等的實數(shù)根;(2)若此方程的兩個根分別為x1,x2,其中x1>x2,若x1=2x2,求m的值.21.(6分)如圖1,四邊形ABCD中,,,點P為DC上一點,且,分別過點A和點C作直線BP的垂線,垂足為點E和點F.證明:∽;若,求的值;如圖2,若,設(shè)的平分線AG交直線BP于當(dāng),時,求線段AG的長.22.(8分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點P從點C出發(fā),在BC邊上以每秒cm的速度向點B勻速運(yùn)動,同時動點Q也從點C出發(fā),沿C→A→B以每秒4cm的速度勻速運(yùn)動,運(yùn)動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當(dāng)時,求△PCQ的面積;(2)設(shè)⊙O的面積為s,求s與t的函數(shù)關(guān)系式;(3)當(dāng)點Q在AB上運(yùn)動時,⊙O與Rt△ABC的一邊相切,求t的值.23.(8分)如圖,以O(shè)為圓心,4為半徑的圓與x軸交于點A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度數(shù);(2)P為x軸正半軸上一點,且PA=OA,連接PC,試判斷PC與⊙O的位置關(guān)系,并說明理由;(3)有一動點M從A點出發(fā),在⊙O上按順時針方向運(yùn)動一周,當(dāng)S△MAO=S△CAO時,求動點M所經(jīng)過的弧長,并寫出此時M點的坐標(biāo).24.(10分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.25.(10分)解方程:3x2﹣2x﹣2=1.26.(12分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.27.(12分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】解:由對稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時,y=c+5,x=3時,y=c﹣3,關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實數(shù)根,當(dāng)△=0時,即c=4,此時x=2,滿足題意.當(dāng)△>0時,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當(dāng)c=﹣5時,此時方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當(dāng)c=3時,此時方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時滿足題意,故﹣5<c≤3或c=4,故選D.點睛:本題主要考查二次函數(shù)與一元二次方程的關(guān)系.理解二次函數(shù)與一元二次方程之間的關(guān)系是解題的關(guān)鍵.2、D【解析】

根據(jù)積的乘方與冪的乘方計算可得.【詳解】解:(﹣ab2)3=﹣a3b6,故選D.【點睛】本題主要考查冪的乘方與積的乘方,解題的關(guān)鍵是掌握積的乘方與冪的乘方的運(yùn)算法則.3、A【解析】原式=?3+6=3,故選A4、A【解析】試題分析:根據(jù)軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據(jù)此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形5、D【解析】

根據(jù)銳角三角函數(shù)的定義,余弦是鄰邊比斜邊,可得答案.【詳解】cosα=.故選D.【點睛】熟悉掌握銳角三角函數(shù)的定義是關(guān)鍵.6、C【解析】A、錯誤.這個四邊形有可能是等腰梯形.B、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.C、正確.可以利用三角形全等證明平行的一組對邊相等.故是平行四邊形.D、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.故選C.7、C【解析】根據(jù)相反數(shù)的定義“只有符號不同的兩個數(shù)互為相反數(shù)”可知:2016的相反數(shù)是-2016.故選C.8、B【解析】

0.056用科學(xué)記數(shù)法表示為:0.056=,故選B.9、B【解析】解:如圖所示:由題意可得:∠1=30°,∠3=50°,則∠2=30°,故由DC∥AB,則∠4=30°+50°=80°.故選B.點睛:此題主要考查了方向角的定義,正確把握定義得出∠3的度數(shù)是解題關(guān)鍵.10、D【解析】試題分析:把一個數(shù)記成a×10n(1≤a<10,n整數(shù)位數(shù)少1)的形式,叫做科學(xué)記數(shù)法.∴此題可記為1.2×105平方米.考點:科學(xué)記數(shù)法11、C【解析】

根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進(jìn)而根據(jù)位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.【詳解】解:根據(jù)位似性質(zhì)得出①△ABC與△DEF是位似圖形,②△ABC與△DEF是相似圖形,∵將△ABC的三邊縮小的原來的,∴△ABC與△DEF的周長比為2:1,故③選項錯誤,根據(jù)面積比等于相似比的平方,∴④△ABC與△DEF的面積比為4:1.故選C.【點睛】此題主要考查了位似圖形的性質(zhì),中等難度,熟悉位似圖形的性質(zhì)是解決問題的關(guān)鍵.12、C【解析】

設(shè)這個多邊形的邊數(shù)為n,根據(jù)多邊形的內(nèi)角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設(shè)這個多邊形的邊數(shù)為n,由多邊形的內(nèi)角和是720°,根據(jù)多邊形的內(nèi)角和定理得(n-2)180°=720°.解得n=6.故選C.【點睛】本題主要考查多邊形的內(nèi)角和定理,熟練掌握多邊形的內(nèi)角和定理是解答本題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、40°【解析】連接CD,則∠ADC=∠ABC=50°,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案為:40°.14、25°.【解析】∵直尺的對邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.15、【解析】

此題有等腰三角形,所以可作BH⊥CD,交EC于點G,利用三線合一性質(zhì)及鄰補(bǔ)角互補(bǔ)可得∠BGD=120°,根據(jù)四邊形內(nèi)角和360°,得到∠ABG+∠ADG=180°.此時再延長GB至K,使AK=AG,構(gòu)造出等邊△AGK.易證△ABK≌△ADG,從而說明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關(guān)系求出CG長度,在Rt△DBH中利用勾股定理及三角函數(shù)知識得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設(shè),則,,∴,∴,在中,,解得,,當(dāng)時,,所以,∴,,,作,設(shè),,,,,∴,,∴,則,故答案為【點睛】本題主要考查了等腰三角形的性質(zhì)及等邊三角形、全等三角形的判定和性質(zhì)以及勾股定理的運(yùn)用,綜合性較強(qiáng),正確作出輔助線是解題的關(guān)鍵.16、<【解析】【分析】根據(jù)實數(shù)大小比較的方法進(jìn)行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點睛】本題考查了實數(shù)大小的比較,熟練掌握實數(shù)大小比較的方法是解題的關(guān)鍵.17、2【解析】分析:根據(jù)分式的運(yùn)算法則即可求出答案.詳解:當(dāng)a+b=2時,原式===a+b=2故答案為:2點睛:本題考查分式的運(yùn)算,解題的關(guān)鍵熟練運(yùn)用分式的運(yùn)算法則,本題屬于基礎(chǔ)題型.18、.【解析】試題分析:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點:反比例函數(shù)圖象上點的坐標(biāo)特征;列表法與樹狀圖法.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)①證明見解析;②10;(2)線段EF的長度不變,它的長度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵M(jìn)P=MQ,ME⊥PQ,∴EQ=12PQ.∵M(jìn)Q∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=82+42考點:翻折變換(折疊問題);矩形的性質(zhì);相似形綜合題.20、(1)見解析;(2)m=2【解析】

(1)根據(jù)一元二次方程根的判別式進(jìn)行分析解答即可;(2)用“因式分解法”解原方程,求得其兩根,再結(jié)合已知條件分析解答即可.【詳解】(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.∴方程有兩個不相等的實數(shù)根;(2)關(guān)于x的方程:x2﹣6mx+9m2﹣9=1可化為:[x﹣(2m+2)][x﹣(2m﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m﹣2,x1>x2,∴x1=2m+2,x2=2m﹣2,又∵x1=2x2,∴2m+2=2(2m﹣2)解得:m=2.【點睛】(1)熟知“一元二次方程根的判別式:在一元二次方程中,當(dāng)時,原方程有兩個不相等的實數(shù)根,當(dāng)時,原方程有兩個相等的實數(shù)根,當(dāng)時,原方程沒有實數(shù)根”是解答第1小題的關(guān)鍵;(2)能用“因式分解法”求得關(guān)于x的方程x2﹣6mx+9m2﹣9=1的兩個根是解答第2小題的關(guān)鍵.21、(1)證明見解析;(2);(3).【解析】

由余角的性質(zhì)可得,即可證∽;由相似三角形的性質(zhì)可得,由等腰三角形的性質(zhì)可得,即可求的值;由題意可證∽,可得,可求,由等腰三角形的性質(zhì)可得AE平分,可證,可得是等腰直角三角形,即可求AG的長.【詳解】證明:,又,又,∽∽,又,,如圖,延長AD與BG的延長線交于H點,∽∴,由可知≌,,代入上式可得,∽,,,∴,,平分又平分,,是等腰直角三角形.∴.【點睛】本題考查的知識點是全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解題關(guān)鍵是添加恰當(dāng)輔助線構(gòu)造相似三角形.22、(1);(2)①;②;(3)t的值為或1或.【解析】

(1)先根據(jù)t的值計算CQ和CP的長,由圖形可知△PCQ是直角三角形,根據(jù)三角形面積公式可得結(jié)論;(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動時,②當(dāng)Q在邊AB上運(yùn)動時;分別根據(jù)勾股定理計算PQ2,最后利用圓的面積公式可得S與t的關(guān)系式;(3)分別當(dāng)⊙O與BC相切時、當(dāng)⊙O與AB相切時,當(dāng)⊙O與AC相切時三種情況分類討論即可確定答案.【詳解】(1)當(dāng)t=時,CQ=4t=4×=2,即此時Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動時,0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當(dāng)Q在邊AB上運(yùn)動時,2<t<4如圖2,設(shè)⊙O與AB的另一個交點為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=90°,Rt△ACB中,AC=2cm,AB=4cm,∴∠B=30°,Rt△PDB中,PD=PB=,∴BD=,∴QD=BQ﹣BD=6﹣4t﹣=3﹣,∴PQ==,∴S=π==;(3)分三種情況:①當(dāng)⊙O與AC相切時,如圖3,設(shè)切點為E,連接OE,過Q作QF⊥AC于F,∴OE⊥AC,∵AQ=4t﹣2,Rt△AFQ中,∠AQF=30°,∴AF=2t﹣1,∴FQ=(2t﹣1),∵FQ∥OE∥PC,OQ=OP,∴EF=CE,∴FQ+PC=2OE=PQ,∴(2t﹣1)+t=,解得:t=或﹣(舍);②當(dāng)⊙O與BC相切時,如圖4,此時PQ⊥BC,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=1;③當(dāng)⊙O與BA相切時,如圖5,此時PQ⊥BA,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=,綜上所述,t的值為或1或.【點睛】本題是圓的綜合題,涉及了三角函數(shù)、勾股定理、圓的面積、切線的性質(zhì)等知識,綜合性較強(qiáng),有一定的難度,以點P和Q運(yùn)動為主線,畫出對應(yīng)的圖形是關(guān)鍵,注意數(shù)形結(jié)合的思想.23、(1)60°;(2)見解析;(3)對應(yīng)的M點坐標(biāo)分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【解析】

(1)由于∠OAC=60°,易證得△OAC是等邊三角形,即可得∠AOC=60°.

(2)由(1)的結(jié)論知:OA=AC,因此OA=AC=AP,即OP邊上的中線等于OP的一半,由此可證得△OCP是直角三角形,且∠OCP=90°,由此可判斷出PC與⊙O的位置關(guān)系.

(3)此題應(yīng)考慮多種情況,若△MAO、△OAC的面積相等,那么它們的高必相等,因此有四個符合條件的M點,即:C點以及C點關(guān)于x軸、y軸、原點的對稱點,可據(jù)此進(jìn)行求解.【詳解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等邊三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半徑,故PC與⊙O的位置關(guān)系是相切.(3)如圖;有三種情況:①取C點關(guān)于x軸的對稱點,則此點符合M點的要求,此時M點的坐標(biāo)為:M1(2,﹣2);劣弧MA的長為:;②取C點關(guān)于原點的對稱點,此點也符合M點的要求,此時M點的坐標(biāo)為:M2(﹣2,﹣2);劣弧MA的長為:;③取C點關(guān)于y軸的對稱點,此點也符合M點的要求,此時M點的坐標(biāo)為:M3(﹣2,2);優(yōu)弧MA的長為:;④當(dāng)C、M重合時,C點符合M點的要求,此時M4(2,2);優(yōu)弧MA的長為:;綜上可知:當(dāng)S△MAO=S△CAO時,動點M所經(jīng)過的弧長為對應(yīng)的M點坐標(biāo)分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).【點睛】本題考查了切線的判定以及弧長的計算方法,注意分類討論思想的運(yùn)用,不要漏解.24、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應(yīng)用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;

(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應(yīng)用:(1)證明:如圖2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)結(jié)論:CD=AD+BD.

理由:如圖2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD?cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.

∵四邊形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等邊三角形,

∴BA=BD=BC,

∵E、C關(guān)于BM對稱,

∴BC=BE=BD=BA,F(xiàn)E=FC,

∴A、D、E、C四點共圓,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等邊三角形,

(4)∵AE=4,EC=EF=1,

∴AH=HE=2,F(xiàn)H=3,

在Rt△BHF中,∵∠BFH=30°,

∴=cos3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論