版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省襄陽市第四中學2025屆高三高中數(shù)學試題競賽模擬(二)數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.2.已知函數(shù)滿足=1,則等于()A.- B. C.- D.3.設正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.24.若,則下列不等式不能成立的是()A. B. C. D.5.若函數(shù)有且僅有一個零點,則實數(shù)的值為()A. B. C. D.6.若實數(shù)滿足不等式組則的最小值等于()A. B. C. D.7.已知集合,,則()A. B.C. D.8.若時,,則的取值范圍為()A. B. C. D.9.設,點,,,,設對一切都有不等式成立,則正整數(shù)的最小值為()A. B. C. D.10.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.11.若集合,,則A. B. C. D.12.在中,已知,,,為線段上的一點,且,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為互不相等的正實數(shù),隨機變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)14.記數(shù)列的前項和為,已知,且.若,則實數(shù)的取值范圍為________.15.在的展開式中,項的系數(shù)是__________(用數(shù)字作答).16.已知數(shù)列遞增的等比數(shù)列,若,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當時,判斷是否是函數(shù)的極值點,并說明理由;(2)當時,不等式恒成立,求整數(shù)的最小值.18.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.19.(12分)設函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關于x的方程能否有三個不同的實根?證明你的結論.20.(12分)平面直角坐標系中,曲線:.直線經過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標系.(1)寫出曲線的極坐標方程與直線的參數(shù)方程;(2)若直線與曲線相交于,兩點,且,求實數(shù)的值.21.(12分)已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)寫出曲線的極坐標方程;(2)點是曲線上的一點,試判斷點與曲線的位置關系.22.(10分)如圖,在長方體中,,為的中點,為的中點,為線段上一點,且滿足,為的中點.(1)求證:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
聯(lián)立方程解得M(3,),根據(jù)MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.本題考查了直線和拋物線的位置關系,意在考查學生的計算能力和轉化能力.2.C【解析】
設的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進而可得.【詳解】解:設的最小正周期為,因為,所以,所以,所以,又,所以當時,,,因為,整理得,因為,,,則所以.故選:C.本題考查三角形函數(shù)的周期性和對稱性,考查學生分析能力和計算能力,是一道難度較大的題目.3.D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.本題主要考查等比數(shù)列的性質的應用,屬于基礎題.4.B【解析】
根據(jù)不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.本題考查不等關系和不等式,屬于基礎題.5.D【解析】
推導出函數(shù)的圖象關于直線對稱,由題意得出,進而可求得實數(shù)的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數(shù)的圖象關于直線對稱.若函數(shù)的零點不為,則該函數(shù)的零點必成對出現(xiàn),不合題意.所以,,即,解得或.①當時,令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時,函數(shù)與函數(shù)的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數(shù)有且只有一個零點.綜上所述,.故選:D.本題考查利用函數(shù)的零點個數(shù)求參數(shù),考查函數(shù)圖象對稱性的應用,解答的關鍵就是推導出,在求出參數(shù)后要對參數(shù)的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.6.A【解析】
首先畫出可行域,利用目標函數(shù)的幾何意義求的最小值.【詳解】解:作出實數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以.故選:A.本題考查了簡單線性規(guī)劃問題,求目標函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.7.A【解析】
根據(jù)對數(shù)性質可知,再根據(jù)集合的交集運算即可求解.【詳解】∵,集合,∴由交集運算可得.故選:A.本題考查由對數(shù)的性質比較大小,集合交集的簡單運算,屬于基礎題.8.D【解析】
由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調遞減,且,在上單調遞增,在上單調遞減,,又在單調遞增,,的取值范圍為.故選:D本題主要考查了不等式恒成立問題,導數(shù)的綜合應用,考查了轉化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.9.A【解析】
先求得,再求得左邊的范圍,只需,利用單調性解得t的范圍.【詳解】由題意知sin,∴,∴,隨n的增大而增大,∴,∴,即,又f(t)=在t上單增,f(2)=-1<0,f(3)=2>0,∴正整數(shù)的最小值為3.本題考查了數(shù)列的通項及求和問題,考查了數(shù)列的單調性及不等式的解法,考查了轉化思想,屬于中檔題.10.D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質可求,從而可得的取值范圍.【詳解】由題設有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.本題考查橢圓的幾何性質,一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質來考慮與焦點三角形有關的問題,本題屬于基礎題.11.C【解析】
解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.本題考查集合的交運算,屬于容易題.12.A【解析】
在中,設,,,結合三角形的內角和及和角的正弦公式化簡可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標系,根據(jù)已知條件結合向量的坐標運算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設,,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標系,則、、,為線段上的一點,則存在實數(shù)使得,,設,,則,,,,,消去得,,所以,,當且僅當時,等號成立,因此,的最小值為.故選:A.本題是一道構思非常巧妙的試題,綜合考查了三角形的內角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關鍵是理解是一個單位向量,從而可用、表示,建立、與參數(shù)的關系,解決本題的第二個關鍵點在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計算能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13.>【解析】
根據(jù)方差計算公式,計算出的表達式,由此利用差比較法,比較出兩者的大小關系.【詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡得①,由于為互不相等的正實數(shù),故,也即,也即.故答案為:本小題主要考查隨機變量期望和方差的計算,考查差比較法比較大小,考查運算求解能力,屬于難題.14.【解析】
根據(jù)遞推公式,以及之間的關系,即可容易求得,再根據(jù)數(shù)列的單調性,求得其最大值,則參數(shù)的范圍可求.【詳解】當時,,解得.所以.因為,則,兩式相減,可得,即,則.兩式相減,可得.所以數(shù)列是首項為3,公差為2的等差數(shù)列,所以,則.令,則.當時,,數(shù)列單調遞減,而,,,故,即實數(shù)的取值范圍為.故答案為:.本題考查由遞推公式求數(shù)列的通項公式,涉及數(shù)列單調性的判斷,屬綜合困難題.15.【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數(shù).16.【解析】
,建立方程組,且,求出,進而求出的公比,即可求出結論.【詳解】數(shù)列遞增的等比數(shù)列,,,解得,所以的公比為,.
故答案為:.本題考查等比數(shù)列的性質、通項公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)是函數(shù)的極大值點,理由詳見解析;(2)1.【解析】
(1)將直接代入,對求導得,由于函數(shù)單調性不好判斷,故而構造函數(shù),繼續(xù)求導,判斷導函數(shù)在左右兩邊的正負情況,最后得出,是函數(shù)的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當時,.令,則當時,.即在內為減函數(shù),且∴當時,;當時,.∴在內是增函數(shù),在內是減函數(shù).綜上,是函數(shù)的極大值點.(2)由題意,得,即.現(xiàn)證明當時,不等式成立,即.即證令則∴當時,;當時,.∴在內單調遞增,在內單調遞減,的最大值為.∴當時,.即當時,不等式成立.綜上,整數(shù)的最小值為.本題考查學生利用導數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調性,由此來求解函數(shù)中的參數(shù)的取值范圍,對學生要求較高,然后需要學生能構造新函數(shù)處理恒成立問題,為難題18.(1);(2).【解析】
若補充②③根據(jù)已知可得平面,從而有,結合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補充兩個條件,結果都一樣,以①②作為條件分析;(1)設,可得,進而求出梯形的面積,可求出,即可求出結論;(2),以為坐標原點,建立空間坐標系,求出坐標,由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設平面為平面.∵,∴平面,而平面平面,∴,又為中點.設,則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標系,設,則,由(1)得為平面的一個法向量,因為,所以直線與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點,即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.本題考查空間點、線、面位置關系,以及體積、直線與平面所成的角,考查計算求解能力,屬于中檔題.19.(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結合導數(shù)的幾何意義即可求解;(2)構造,則原題等價于對任意恒成立,即時,,利用導數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調性;(3)構造并進行求導,研究單調性,結合函數(shù)零點存在性定理證明即可.【詳解】(1),,曲線在點處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當時,對任意,,,,,即在單調遞增,此時,實數(shù)的取值范圍為.(3)關于的方程不可能有三個不同的實根,以下給出證明:記,,則關于的方程有三個不同的實根,等價于函數(shù)有三個零點,,當時,,記,則,在單調遞增,,即,,在單調遞增,至多有一個零點;當時,記,則,在單調遞增,即在單調遞增,至多有一個零點,則至多有兩個單調區(qū)間,至多有兩個零點.因此,不可能有三個零點.關于的方程不可能有三個不同的實根.本題考查了導數(shù)幾何意義的應用、利用導數(shù)研究函數(shù)單調性以及函數(shù)的零點存在性定理,考查了轉化與化歸的數(shù)學思想,屬于難題.20.(Ⅰ)(t為參數(shù));(Ⅱ)或或.【解析】
試題分析:本題主要考查極坐標方程、參數(shù)方程與直角方程的相互轉化、直線與拋物線的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,用,化簡表達式,得到曲線的極坐標方程,由已知點和傾斜角得到直線的參數(shù)方程;第二問,直線方程與曲線方程聯(lián)立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點:本題主要考查:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)魚技巧與知識培訓課件
- 2025年度海洋動物運輸與供應鏈管理合同3篇
- 綠森鋼化中空玻璃遷擴建項目可行性研究報告模板-立項拿地
- 全國清華版信息技術小學四年級下冊新授課 第4課 獨特景觀-在幻燈片中插入文本框 說課稿
- Unit7 Grammar Focus 說課稿 2024-2025學年人教版英語七年級上冊
- 貴州省安順市(2024年-2025年小學六年級語文)統(tǒng)編版競賽題(下學期)試卷及答案
- 安徽省合肥市新站區(qū)2024-2025學年九年級上學期期末化學試卷(含答案)
- 二零二五年度周轉材料租賃與施工現(xiàn)場安全生產合同3篇
- 陜西省商洛市(2024年-2025年小學六年級語文)部編版小升初真題(上學期)試卷及答案
- 貴州黔南經濟學院《手繪表現(xiàn)技法景觀》2023-2024學年第一學期期末試卷
- 事業(yè)單位公開招聘工作人員政審表
- GB/T 35199-2017土方機械輪胎式裝載機技術條件
- GB/T 28591-2012風力等級
- 思博安根測儀熱凝牙膠尖-說明書
- 信息學奧賽-計算機基礎知識(完整版)資料
- 數(shù)字信號處理(課件)
- 出院小結模板
- HITACHI (日立)存儲操作說明書
- (新版教材)蘇教版二年級下冊科學全冊教案(教學設計)
- 61850基礎技術介紹0001
- 電鏡基本知識培訓
評論
0/150
提交評論