2022年山東省東營市勝利油田59中學(xué)中考一模數(shù)學(xué)試題含解析_第1頁
2022年山東省東營市勝利油田59中學(xué)中考一模數(shù)學(xué)試題含解析_第2頁
2022年山東省東營市勝利油田59中學(xué)中考一模數(shù)學(xué)試題含解析_第3頁
2022年山東省東營市勝利油田59中學(xué)中考一模數(shù)學(xué)試題含解析_第4頁
2022年山東省東營市勝利油田59中學(xué)中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022年山東省東營市勝利油田59中學(xué)中考一模數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,二次函數(shù)y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結(jié)論:①abc>0;②9a+3b+c>0;③c>﹣1;④關(guān)于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結(jié)論有()A.1個 B.3個 C.4個 D.5個2.去年某市7月1日到7日的每一天最高氣溫變化如折線圖所示,則關(guān)于這組數(shù)據(jù)的描述正確的是()A.最低溫度是32℃ B.眾數(shù)是35℃ C.中位數(shù)是34℃ D.平均數(shù)是33℃3.若數(shù)a使關(guān)于x的不等式組有解且所有解都是2x+6>0的解,且使關(guān)于y的分式方程+3=有整數(shù)解,則滿足條件的所有整數(shù)a的個數(shù)是()A.5 B.4 C.3 D.24.下列代數(shù)運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x55.下列各數(shù)中,最小的數(shù)是A. B. C.0 D.6.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐7.下列調(diào)查中,調(diào)查方式選擇合理的是()A.為了解襄陽市初中每天鍛煉所用時間,選擇全面調(diào)查B.為了解襄陽市電視臺《襄陽新聞》欄目的收視率,選擇全面調(diào)查C.為了解神舟飛船設(shè)備零件的質(zhì)量情況,選擇抽樣調(diào)查D.為了解一批節(jié)能燈的使用壽命,選擇抽樣調(diào)查8.如圖,已知函數(shù)與的圖象在第二象限交于點,點在的圖象上,且點B在以O(shè)點為圓心,OA為半徑的上,則k的值為A. B. C. D.9.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(-1,0),對稱軸為直線x=2,下列結(jié)論:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>-1時,y的值隨x值的增大而增大.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個10.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數(shù)為()A.40° B.50° C.60° D.70°11.在體育課上,甲,乙兩名同學(xué)分別進(jìn)行了5次跳遠(yuǎn)測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學(xué)的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差12.下列函數(shù)中,當(dāng)x>0時,y值隨x值增大而減小的是()A.y=x2 B.y=x﹣1 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.拋物線y=(x﹣3)2+1的頂點坐標(biāo)是____.14.如圖,直線a∥b,正方形ABCD的頂點A、B分別在直線a、b上.若∠2=73°,則∠1=.15.如圖,直線y=k1x+b與雙曲線交于A、B兩點,其橫坐標(biāo)分別為1和5,則不等式k1x<+b的解集是▲.16.一個樣本為1,3,2,2,a,b,c,已知這個樣本的眾數(shù)為3,平均數(shù)為2,則這組數(shù)據(jù)的中位數(shù)為______.17.如圖,⊙C經(jīng)過原點且與兩坐標(biāo)軸分別交于點A與點B,點B的坐標(biāo)為(﹣,0),M是圓上一點,∠BMO=120°.⊙C圓心C的坐標(biāo)是_____.18.函數(shù)中,自變量的取值范圍是______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,一次函數(shù)y=﹣12x+52的圖象與反比例函數(shù)y=(1)求反比例函數(shù)的解析式;(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標(biāo).20.(6分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯(lián)結(jié)AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯(lián)結(jié)EF.(1)當(dāng)CM:CB=1:4時,求CF的長.(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.(3)當(dāng)△ABM∽△EFN時,求CM的長.21.(6分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(A在B的左側(cè)),與y軸交于點C.(1)當(dāng)A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標(biāo);(2)P(m,t)為拋物線上的一個動點.①當(dāng)點P關(guān)于原點的對稱點P′落在直線BC上時,求m的值;②當(dāng)點P關(guān)于原點的對稱點P′落在第一象限內(nèi),P′A2取得最小值時,求m的值及這個最小值.22.(8分)解不等式組,并把解集在數(shù)軸上表示出來.23.(8分)如圖,在四邊形中,為的中點,于點,,,,求的度數(shù).24.(10分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經(jīng)成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關(guān)于x的函數(shù)表達(dá)式;李華騎單車的時間(單位:分鐘)也受x的影響,其關(guān)系可以用來描述.請問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.25.(10分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負(fù)半軸交于點B,且OA=OB.(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標(biāo);(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)26.(12分)某學(xué)校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;(1)求購買一個甲種足球、一個乙種足球各需多少元;(2)2018年這所學(xué)校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進(jìn)行調(diào)整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學(xué)校最多可購買多少個乙種足球?27.(12分)某汽車廠計劃半年內(nèi)每月生產(chǎn)汽車20輛,由于另有任務(wù),每月上班人數(shù)不一定相等,實每月生產(chǎn)量與計劃量相比情況如下表(增加為正,減少為負(fù))生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?半年內(nèi)總生產(chǎn)量是多少?比計劃多了還是少了,增加或減少多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)拋物線的圖象與系數(shù)的關(guān)系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當(dāng)x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設(shè)關(guān)于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側(cè),∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax1+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.本題屬于中等題型.2、D【解析】分析:將數(shù)據(jù)從小到大排列,由中位數(shù)及眾數(shù)、平均數(shù)的定義,可得出答案.詳解:由折線統(tǒng)計圖知這7天的氣溫從低到高排列為:31、32、33、33、33、34、35,所以最低氣溫為31℃,眾數(shù)為33℃,中位數(shù)為33℃,平均數(shù)是=33℃.故選D.點睛:本題考查了眾數(shù)、中位數(shù)的知識,解答本題的關(guān)鍵是由折線統(tǒng)計圖得到最高氣溫的7個數(shù)據(jù).3、D【解析】

由不等式組有解且滿足已知不等式,以及分式方程有整數(shù)解,確定出滿足題意整數(shù)a的值即可.【詳解】不等式組整理得:,由不等式組有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整數(shù)解,得到a=0,2,共2個,故選:D.【點睛】本題考查了分式方程的解,解一元一次不等式,以及解一元一次不等式組,熟練掌握運算法則是解本題的關(guān)鍵.4、D【解析】

分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進(jìn)行逐一計算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【點睛】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關(guān)鍵.5、A【解析】

應(yīng)明確在數(shù)軸上,從左到右的順序,就是數(shù)從小到大的順序,據(jù)此解答.【詳解】解:因為在數(shù)軸上-3在其他數(shù)的左邊,所以-3最??;故選A.【點睛】此題考負(fù)數(shù)的大小比較,應(yīng)理解數(shù)字大的負(fù)數(shù)反而?。?、D【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【點睛】本題考查由三視圖確定幾何體的形狀,主要考查學(xué)生空間想象能力以及對立體圖形的認(rèn)識.7、D【解析】

A.為了解襄陽市初中每天鍛煉所用時間,選擇抽樣調(diào)查,故A不符合題意;B.為了解襄陽市電視臺《襄陽新聞》欄目的收視率,選擇抽樣調(diào)查,故B不符合題意;C.為了解神舟飛船設(shè)備零件的質(zhì)量情況,選普查,故C不符合題意;D.為了解一批節(jié)能燈的使用壽命,選擇抽樣調(diào)查,故D符合題意;故選D.8、A【解析】

由題意,因為與反比例函數(shù)都是關(guān)于直線對稱,推出A與B關(guān)于直線對稱,推出,可得,求出m即可解決問題;【詳解】函數(shù)與的圖象在第二象限交于點,點與反比例函數(shù)都是關(guān)于直線對稱,與B關(guān)于直線對稱,,,點故選:A.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的圖像與性質(zhì),圓的對稱性及軸對稱的性質(zhì).解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,本題的突破點是發(fā)現(xiàn)A,B關(guān)于直線對稱.9、B【解析】

根據(jù)拋物線的對稱軸即可判定①;觀察圖象可得,當(dāng)x=-3時,y<0,由此即可判定②;觀察圖象可得,當(dāng)x=1時,y>0,由此即可判定③;觀察圖象可得,當(dāng)x>2時,y的值隨x值的增大而增大,即可判定④.【詳解】由拋物線的對稱軸為x=2可得-b觀察圖象可得,當(dāng)x=-3時,y<0,即9a-3b+c<0,所以a+c<觀察圖象可得,當(dāng)x=1時,y>0,即a+b+c>0,③正確;觀察圖象可得,當(dāng)x>2時,y的值隨x值的增大而增大,④錯誤.綜上,正確的結(jié)論有2個.故選B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.10、B【解析】

解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.11、D【解析】

方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越??;反之,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好?!驹斀狻坑捎诜讲钅芊从硵?shù)據(jù)的穩(wěn)定性,需要比較這兩名學(xué)生立定跳遠(yuǎn)成績的方差.故選D.12、D【解析】A、、∵y=x2,∴對稱軸x=0,當(dāng)圖象在對稱軸右側(cè),y隨著x的增大而增大;而在對稱軸左側(cè),y隨著x的增大而減小,故此選項錯誤B、k>0,y隨x增大而增大,故此選項錯誤C、B、k>0,y隨x增大而增大,故此選項錯誤D、y=(x>0),反比例函數(shù),k>0,故在第一象限內(nèi)y隨x的增大而減小,故此選項正確二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(3,1)【解析】分析:已知拋物線解析式為頂點式,可直接寫出頂點坐標(biāo).詳解:∵y=(x﹣3)2+1為拋物線的頂點式,根據(jù)頂點式的坐標(biāo)特點可知,拋物線的頂點坐標(biāo)為(3,1).故答案為(3,1).點睛:主要考查了拋物線頂點式的運用.14、107°【解析】

過C作d∥a,得到a∥b∥d,構(gòu)造內(nèi)錯角,根據(jù)兩直線平行,內(nèi)錯角相等,及平角的定義,即可得到∠1的度數(shù).【詳解】過C作d∥a,∴a∥b,∴a∥b∥d,∵四邊形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案為107°.【點睛】本題考查了平行線的性質(zhì)以及正方形性質(zhì)的運用,解題時注意:兩直線平行,內(nèi)錯角相等.解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯角.15、-2<x<-1或x>1.【解析】不等式的圖象解法,平移的性質(zhì),反比例函數(shù)與一次函數(shù)的交點問題,對稱的性質(zhì).不等式k1x<+b的解集即k1x-b<的解集,根據(jù)不等式與直線和雙曲線解析式的關(guān)系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個單位得到,如圖所示.根據(jù)函數(shù)圖象的對稱性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點坐標(biāo)關(guān)于原點對稱.由關(guān)于原點對稱的坐標(biāo)點性質(zhì),直線y=k1x-b圖象與雙曲線圖象交點A′、B′的橫坐標(biāo)為A、B兩點橫坐標(biāo)的相反數(shù),即為-1,-2.∴由圖知,當(dāng)-2<x<-1或x>1時,直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.16、1.【解析】解:因為眾數(shù)為3,可設(shè)a=3,b=3,c未知,平均數(shù)=(1+3+1+1+3+3+c)÷7=1,解得c=0,將這組數(shù)據(jù)按從小到大的順序排列:0、1、1、1、3、3、3,位于最中間的一個數(shù)是1,所以中位數(shù)是1,故答案為:1.點睛:本題為統(tǒng)計題,考查平均數(shù)、眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.17、(,)【解析】

連接AB,OC,由圓周角定理可知AB為⊙C的直徑,再根據(jù)∠BMO=120°可求出∠BAO以及∠BCO的度數(shù),在Rt△COD中,解直角三角形即可解決問題;【詳解】連接AB,OC,∵∠AOB=90°,∴AB為⊙C的直徑,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,過C作CD⊥OB于D,則OD=OB,∠DCB=∠DCO=60°,∵B(-,0),∴BD=OD=在Rt△COD中.CD=OD?tan30°=,∴C(-,),故答案為C(-,).【點睛】本題考查的是圓心角、弧、弦的關(guān)系及圓周角定理、直角三角形的性質(zhì)、坐標(biāo)與圖形的性質(zhì)及特殊角的三角函數(shù)值,根據(jù)題意畫出圖形,作出輔助線,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.18、【解析】

根據(jù)分式有意義的條件是分母不為2;分析原函數(shù)式可得關(guān)系式x?1≠2,解得答案.【詳解】根據(jù)題意得x?1≠2,解得:x≠1;故答案為:x≠1.【點睛】本題主要考查自變量得取值范圍的知識點,當(dāng)函數(shù)表達(dá)式是分式時,考慮分式的分母不能為2.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=2x(2)(0,【解析】

(1)根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得出12【詳解】(1)∵反比例函數(shù)y==kx∴12∵k>0,∴k=2,故反比例函數(shù)的解析式為:y=2x(2)作點A關(guān)于y軸的對稱點A′,連接A′B,交y軸于點P,則PA+PB最?。蓎=-12x+52∴A(1,2),B(4,12∴A′(﹣1,2),最小值A(chǔ)′B=4+12+1設(shè)直線A′B的解析式為y=mx+n,則-m+n=24m+n=12∴直線A′B的解析式為y=-3∴x=0時,y=1710∴P點坐標(biāo)為(0,1710【點睛】本題考查的是反比例函數(shù)圖象與一次函數(shù)圖象的交點問題以及最短路線問題,解題的關(guān)鍵是確定PA+PB最小時,點P的位置,靈活運用數(shù)形結(jié)合思想求出有關(guān)點的坐標(biāo)和圖象的解析式是解題的關(guān)鍵.20、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】

(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長,利用平行線分線段成比例定理即可解決問題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構(gòu)建函數(shù)關(guān)系式即可解決問題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問題;【詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設(shè)DN=HM=x,則MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.【點睛】本題考查了正方形的判定與性質(zhì),平行線分線段成比例定理,勾股定理,相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì).熟練運用平行線分線段成比例定理是解(1)的關(guān)鍵;證明△EAM∽△EBA是解(2)的關(guān)鍵;綜合運用全等三角形的判定與性質(zhì)是解(3)的關(guān)鍵.21、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標(biāo)為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解析】

(1)根據(jù)A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數(shù))的圖象上,可以求得b、c的值;(3)①根據(jù)題意可以得到點P′的坐標(biāo),再根據(jù)函數(shù)解析式可以求得點B的坐標(biāo),進(jìn)而求得直線BC的解析式,再根據(jù)點P′落在直線BC上,從而可以求得m的值;②根據(jù)題意可以表示出P′A3,從而可以求得當(dāng)P′A3取得最小值時,m的值及這個最小值.【詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數(shù))與x軸相交于A,B兩點,與y軸交于點C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點坐標(biāo)為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點P和P′關(guān)于原點對稱,∴P′(﹣m,﹣t),當(dāng)y=3時,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點B(1,3).∵點B(1,3),點C(3,﹣1),設(shè)直線BC對應(yīng)的函數(shù)解析式為:y=kx+d,,解得:,∴直線BC的直線解析式為y=x﹣1.∵點P′落在直線BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;②由題意可知,點P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函數(shù)的最小值是﹣4,∴﹣4≤t<3.∵點P(m,t)在拋物線上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,過點P′作P′H⊥x軸,H為垂足,有H(﹣m,3).又∵A(﹣1,3),則P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴當(dāng)t=﹣時,P′A3有最小值,此時P′A3=,∴=m3﹣3m﹣1,解得:m=.∵m<3,∴m=,即P′A3取得最小值時,m的值是,這個最小值是.【點睛】本題是二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用二次函數(shù)的性質(zhì)解答.22、不等式組的解集為,在數(shù)軸上表示見解析.【解析】

先求出不等式組中每一個不等式的解集,再求出它們的公共部分,然后把不等式的解集表示在數(shù)軸上即可.【詳解】由2(x+2)≤3x+3,可得:x≥1,由,可得:x<3,則不等式組的解為:1≤x<3,不等式組的解集在數(shù)軸上表示如圖所示:【點睛】本題考查了一元一次不等式組,把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.23、【解析】

連接,根據(jù)線段垂直平分線的性質(zhì)得到,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算即可.【詳解】連接,∵為的中點,于點,∴,∴,∵,∴,∵,∴,∵,∴,∴,∴.【點睛】本題考查的是線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)以及三角形內(nèi)角和定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關(guān)鍵.24、(1)y1=2x+2;(2)選擇在B站出地鐵,最短時間為39.5分鐘.【解析】

(1)根據(jù)表格中的數(shù)據(jù),運用待定系數(shù)法,即可求得y1關(guān)于x的函數(shù)表達(dá)式;(2)設(shè)李華從文化宮回到家所需的時間為y,則y=y1+y2=x2-9x+80,根據(jù)二次函數(shù)的性質(zhì),即可得出最短時間.【詳解】(1)設(shè)y1=kx+b,將(8,18),(9,20),代入y1=kx+b,得:解得所以y1關(guān)于x的函數(shù)解析式為y1=2x+2.(2)設(shè)李華從文化宮回到家所需的時間為y,則y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.所以當(dāng)x=9時,y取得最小值,最小值為39.5,答:李華應(yīng)選擇在B站出地鐵,才能使他從文化宮回到家所需的時間最短,最短時間為39.5分鐘.【點睛】本題主要考查了二次函數(shù)的應(yīng)用,解此類題的關(guān)鍵是通過題意,確定出二次函數(shù)的解析式,然后確定其最大值最小值,在求二次函數(shù)的最值時,一定要注意自變量x的取值范圍.25、(1),;(2)點C的坐標(biāo)為或;(3)2.【解析】試題分析:(1)由點A的坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a值,從而得出反比例函數(shù)解析式;由勾股定理得出OA的長度從而得出點B的坐標(biāo),由點A、B的坐標(biāo)利用待定系數(shù)法即可求出直線AB的解析式;

(2)設(shè)點C的坐標(biāo)為(m,0),令直線AB與x軸的交點為D,根據(jù)三角形的面積公式結(jié)合△ABC的面積是8,可得出關(guān)于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點C的坐標(biāo);

(3)設(shè)點E的橫坐標(biāo)為1,點F的橫坐標(biāo)為6,點M、N分別對應(yīng)點E、F,根據(jù)反比例函數(shù)解析式以及平移的性質(zhì)找出點E、F、M、N的坐標(biāo),根據(jù)EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據(jù)平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據(jù)平移的性質(zhì)即可得出C1平移至C2處所掃過的面積正好為S.試題解析:(1)∵點A(4,3)在反比例函數(shù)y=的圖象上,∴a=4×3=12,∴反比例函數(shù)解析式為y=;∵OA==1,OA=OB,點B在y軸負(fù)半軸上,∴點B(0,﹣1).把點A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數(shù)的解析式為y=2x﹣1.(2)設(shè)點C的坐標(biāo)為(m,0),令直線AB與x軸的交點為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論