2025年湖南省長沙市一中、湖南師大附中高考數(shù)學(xué)試題查漏補(bǔ)缺試題含解析_第1頁
2025年湖南省長沙市一中、湖南師大附中高考數(shù)學(xué)試題查漏補(bǔ)缺試題含解析_第2頁
2025年湖南省長沙市一中、湖南師大附中高考數(shù)學(xué)試題查漏補(bǔ)缺試題含解析_第3頁
2025年湖南省長沙市一中、湖南師大附中高考數(shù)學(xué)試題查漏補(bǔ)缺試題含解析_第4頁
2025年湖南省長沙市一中、湖南師大附中高考數(shù)學(xué)試題查漏補(bǔ)缺試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025年湖南省長沙市一中、湖南師大附中高考數(shù)學(xué)試題查漏補(bǔ)缺試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)復(fù)數(shù)滿足為虛數(shù)單位),則()A. B. C. D.2.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.3.若,則“”是“的展開式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件4.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點(diǎn)對稱;②函數(shù)是周期函數(shù);③當(dāng)時(shí),函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點(diǎn),其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④5.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.46.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.7.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個(gè)結(jié)論:①在上單調(diào)遞增;②③在上沒有零點(diǎn);④在上只有一個(gè)零點(diǎn).其中所有正確結(jié)論的編號是()A.②④ B.①③ C.②③ D.①②④8.正方體,是棱的中點(diǎn),在任意兩個(gè)中點(diǎn)的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.69.若,滿足約束條件,則的取值范圍為()A. B. C. D.10.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)作圓的切線與雙曲線的左支交于點(diǎn)P,若,則雙曲線的離心率為()A. B. C. D.11.將函數(shù)f(x)=sin3x-cos3x+1的圖象向左平移個(gè)單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:①它的圖象關(guān)于直線x=對稱;②它的最小正周期為;③它的圖象關(guān)于點(diǎn)(,1)對稱;④它在[]上單調(diào)遞增.其中所有正確結(jié)論的編號是()A.①② B.②③ C.①②④ D.②③④12.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.割圓術(shù)是估算圓周率的科學(xué)方法,由三國時(shí)期數(shù)學(xué)家劉徽創(chuàng)立,他用圓內(nèi)接正多邊形面積無限逼近圓面積,從而得出圓周率.現(xiàn)在半徑為1的圓內(nèi)任取一點(diǎn),則該點(diǎn)取自其內(nèi)接正十二邊形內(nèi)部的概率為________.14.如圖所示,在直角梯形中,,、分別是、上的點(diǎn),,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:①平面;②四點(diǎn)、、、可能共面;③若,則平面平面;④平面與平面可能垂直.其中正確的是__________.15.我國古代名著《張丘建算經(jīng)》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:問亭方幾何?”大致意思是:有一個(gè)四棱錐下底邊長為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺(tái)狀方亭,且四棱臺(tái)的上底邊長為六尺,則該正四棱臺(tái)的高為________尺,體積是_______立方尺(注:1丈=10尺).16.學(xué)校藝術(shù)節(jié)對同一類的四項(xiàng)參賽作品,只評一項(xiàng)一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:甲說:“作品獲得一等獎(jiǎng)”;乙說:“作品獲得一等獎(jiǎng)”;丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;丁說:“是或作品獲得一等獎(jiǎng)”,若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.18.(12分)已知數(shù)列的通項(xiàng),數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于,兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.20.(12分)已知矩陣,.求矩陣;求矩陣的特征值.21.(12分)若正數(shù)滿足,求的最小值.22.(10分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實(shí)數(shù)t的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

易得,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,所以.故選:B.本題考查復(fù)數(shù)的乘法、除法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.2.A【解析】

根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,,的最小值為,故選:A.本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.3.B【解析】

求得的二項(xiàng)展開式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計(jì)算能力,難度較易.4.A【解析】

根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點(diǎn)知②錯(cuò)誤;函數(shù)定義域?yàn)?,最值點(diǎn)即為極值點(diǎn),由知③錯(cuò)誤;令,在和兩種情況下知均無零點(diǎn),知④正確.【詳解】由題意得:定義域?yàn)?,,為奇函?shù),圖象關(guān)于原點(diǎn)對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯(cuò)誤;,,不是最值,③錯(cuò)誤;令,當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);綜上所述:與無交點(diǎn),④正確.故選:.本題考查函數(shù)與導(dǎo)數(shù)知識的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點(diǎn)個(gè)數(shù)問題的求解;本題綜合性較強(qiáng),對于學(xué)生的分析和推理能力有較高要求.5.C【解析】

計(jì)算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C本題主要考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù)的概念.6.C【解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.7.A【解析】

先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點(diǎn)情況得解.【詳解】因?yàn)楹瘮?shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當(dāng)時(shí),,且,所以在上只有一個(gè)零點(diǎn).所以正確結(jié)論的編號②④故選:A.本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點(diǎn)問題,意在考查學(xué)生對這些知識的理解掌握水平.8.B【解析】

先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.9.B【解析】

根據(jù)約束條件作出可行域,找到使直線的截距取最值得點(diǎn),相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過點(diǎn)時(shí),取得最小值-5;經(jīng)過點(diǎn)時(shí),取得最大值5,故.故選:B本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.10.C【解析】

設(shè)過點(diǎn)作圓的切線的切點(diǎn)為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點(diǎn),則有,得到,即可求解.【詳解】設(shè)過點(diǎn)作圓的切線的切點(diǎn)為,,所以是中點(diǎn),,,.故選:C.本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.11.B【解析】

根據(jù)函數(shù)圖象的平移變換公式求出函數(shù)的解析式,再利用正弦函數(shù)的對稱性、單調(diào)區(qū)間等相關(guān)性質(zhì)求解即可.【詳解】因?yàn)閒(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數(shù)g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對稱軸,故①錯(cuò)誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數(shù)g(x)的圖象關(guān)于點(diǎn)(,1)對稱,故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯(cuò)誤;故選:B本題考查圖象的平移變換和正弦函數(shù)的對稱性、單調(diào)性和最小正周期等性質(zhì);考查運(yùn)算求解能力和整體代換思想;熟練掌握正弦函數(shù)的對稱性、單調(diào)性和最小正周期等相關(guān)性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型12.D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當(dāng)直線過點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,最大值為3;當(dāng)直線過點(diǎn)時(shí),目標(biāo)函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點(diǎn):線性規(guī)劃.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

求出圓內(nèi)接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內(nèi)接正十二邊形,可分割為12個(gè)頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據(jù)幾何概型公式,該點(diǎn)取自其內(nèi)接正十二邊形的概率為,故答案為:.本小題主要考查面積型幾何概型的計(jì)算,屬于基礎(chǔ)題.14.①③【解析】

連接、交于點(diǎn),取的中點(diǎn),證明四邊形為平行四邊形,可判斷命題①的正誤;利用線面平行的性質(zhì)定理和空間平行線的傳遞性可判斷命題②的正誤;連接,證明出,結(jié)合線面垂直和面面垂直的判定定理可判斷命題③的正誤;假設(shè)平面與平面垂直,利用面面垂直的性質(zhì)定理可判斷命題④的正誤.綜合可得出結(jié)論.【詳解】對于命題①,連接、交于點(diǎn),取的中點(diǎn)、,連接、,如下圖所示:則且,四邊形是矩形,且,為的中點(diǎn),為的中點(diǎn),且,且,四邊形為平行四邊形,,即,平面,平面,平面,命題①正確;對于命題②,,平面,平面,平面,若四點(diǎn)、、、共面,則這四點(diǎn)可確定平面,則,平面平面,由線面平行的性質(zhì)定理可得,則,但四邊形為梯形且、為兩腰,與相交,矛盾.所以,命題②錯(cuò)誤;對于命題③,連接、,設(shè),則,在中,,,則為等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、為平面內(nèi)的兩條相交直線,所以,平面,平面,平面平面,命題③正確;對于命題④,假設(shè)平面與平面垂直,過點(diǎn)在平面內(nèi)作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,顯然與不垂直,命題④錯(cuò)誤.故答案為:①③.本題考查立體幾何綜合問題,涉及線面平行、面面垂直的證明、以及點(diǎn)共面的判斷,考查推理能力,屬于中等題.15.213892【解析】

根據(jù)題意畫出圖形,利用棱錐與棱臺(tái)的結(jié)構(gòu)特征求出正四棱臺(tái)的高,再計(jì)算它的體積.【詳解】如圖所示:正四棱錐P-ABCD的下底邊長為二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱臺(tái)ABCD-A'B'C'D',且上底邊長為A'B'=6尺,所以,解得,所以該正四棱臺(tái)的體積是,故答案為:21;3892.本題考查了棱錐與棱臺(tái)的結(jié)構(gòu)特征與應(yīng)用問題,也考查了棱臺(tái)的體積計(jì)算問題,屬于中檔題.16.C【解析】

假設(shè)獲得一等獎(jiǎng)的作品,判斷四位同學(xué)說對的人數(shù).【詳解】分別獲獎(jiǎng)的說對人數(shù)如下表:獲獎(jiǎng)作品ABCD甲對錯(cuò)錯(cuò)錯(cuò)乙錯(cuò)錯(cuò)對錯(cuò)丙對錯(cuò)對錯(cuò)丁對錯(cuò)錯(cuò)對說對人數(shù)3021故獲得一等獎(jiǎng)的作品是C.本題考查邏輯推理,常用方法有:1、直接推理結(jié)果,2、假設(shè)結(jié)果檢驗(yàn)條件.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析.【解析】

(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數(shù),求得最小值,再利用均值不等式即可證明.【詳解】(1)當(dāng)時(shí),等價(jià)于,該不等式恒成立,當(dāng)時(shí),等價(jià)于,該不等式解集為,當(dāng)時(shí),等價(jià)于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因?yàn)?,,,所以,,,所以,?dāng)且僅當(dāng)時(shí)等號成立.本題考查利用分類討論求解絕對值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.18.(1);(2).【解析】

(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進(jìn)行賦值計(jì)算出的首項(xiàng)和公比,即可求解出的通項(xiàng)公式;(2)的通項(xiàng)公式符合等差乘以等比的形式,采用錯(cuò)位相減法進(jìn)行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設(shè)數(shù)列的公比為,,,解得(2),,,,.本題考查等差、等比數(shù)列的綜合以及錯(cuò)位相減法求和的應(yīng)用,難度一般.判斷是否適合使用錯(cuò)位相減法,可根據(jù)數(shù)列的通項(xiàng)公式是否符合等差乘以等比的形式來判斷.19.(1)證明見解析;(2)是,理由見解析.【解析】

(1)根據(jù)判別式即可證明.(2)根據(jù)向量的數(shù)量積和韋達(dá)定理即可證明,需要分類討論,【詳解】解:(1)當(dāng)時(shí)直線方程為或,直線與橢圓相切.當(dāng)時(shí),由得,由題知,,即,所以.故直線與橢圓相切.(2)設(shè),,當(dāng)時(shí),,,,所以,即.當(dāng)時(shí),由得,則,,.因?yàn)?所以,即.故為定值.本題考查橢圓的簡單性質(zhì),考查向量的運(yùn)算,注意直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理,考查化簡整理的運(yùn)算能力,屬于中檔題.20.;,.【解析】

由題意,可得,利用矩陣的知識求解即可.矩陣的特征多項(xiàng)式為,令,求出矩陣的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論