安徽省合肥45中學2024年中考一模數(shù)學試題含解析_第1頁
安徽省合肥45中學2024年中考一模數(shù)學試題含解析_第2頁
安徽省合肥45中學2024年中考一模數(shù)學試題含解析_第3頁
安徽省合肥45中學2024年中考一模數(shù)學試題含解析_第4頁
安徽省合肥45中學2024年中考一模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

安徽省合肥45中學2024年中考一模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.計算36÷(﹣6)的結果等于()A.﹣6 B.﹣9 C.﹣30 D.62.如圖,已知A、B兩點的坐標分別為(-2,0)、(0,1),⊙C的圓心坐標為(0,-1),半徑為1.若D是⊙C上的一個動點,射線AD與y軸交于點E,則△ABE面積的最大值是A.3 B. C. D.43.如圖,剪兩張對邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°4.定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個方程為“和諧”方程;如果一元二次方程ax2+bx+c=0(a≠0)滿足a﹣b+c=0那么我們稱這個方程為“美好”方程,如果一個一元二次方程既是“和諧”方程又是“美好”方程,則下列結論正確的是()A.方有兩個相等的實數(shù)根 B.方程有一根等于0C.方程兩根之和等于0 D.方程兩根之積等于05.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°6.已知拋物線y=x2-2mx-4(m>0)的頂點M關于坐標原點O的對稱點為M′,若點M′在這條拋物線上,則點M的坐標為()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)7.下列說法正確的是()A.一個游戲的中獎概率是110B.為了解全國中學生的心理健康情況,應該采用普查的方式C.一組數(shù)據(jù)8,8,7,10,6,8,9的眾數(shù)和中位數(shù)都是8D.若甲組數(shù)據(jù)的方差S="0.01",乙組數(shù)據(jù)的方差s=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定8.如圖,3個形狀大小完全相同的菱形組成網(wǎng)格,菱形的頂點稱為格點.已知菱形的一個角為60°,A、B、C都在格點上,點D在過A、B、C三點的圓弧上,若也在格點上,且∠AED=∠ACD,則∠AEC度數(shù)為()A.75° B.60° C.45° D.30°9.若關于x的分式方程的解為非負數(shù),則a的取值范圍是()A.a(chǎn)≥1 B.a(chǎn)>1 C.a(chǎn)≥1且a≠4 D.a(chǎn)>1且a≠410.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣211.四個有理數(shù)﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣312.關于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當時,函數(shù)值隨著的增大而增大; D.當時,.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.14.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.15.七巧板是我們祖先的一項創(chuàng)造,被譽為“東方魔板”,如圖所示是一副七巧板,若已知S△BIC=1,據(jù)七巧板制作過程的認識,求出平行四邊形EFGH_____.16.邊長為6的正六邊形外接圓半徑是_____.17.如圖,AB為⊙0的弦,AB=6,點C是⊙0上的一個動點,且∠ACB=45°,若點M、N分別是AB、BC的中點,則MN長的最大值是______________.18.函數(shù)中,自變量的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知,關于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,求k的取值范圍.20.(6分)已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.求證:AP=BQ;在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.21.(6分)如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,OA=5,AB與⊙O相切于點B,BP的延長線交直線l于點C.(1)求證:AB=AC;(2)若,求⊙O的半徑.22.(8分)益馬高速通車后,將桃江馬跡塘的農(nóng)產(chǎn)品運往益陽的運輸成本大大降低.馬跡塘一農(nóng)戶需要將A,B兩種農(nóng)產(chǎn)品定期運往益陽某加工廠,每次運輸A,B產(chǎn)品的件數(shù)不變,原來每運一次的運費是1200元,現(xiàn)在每運一次的運費比原來減少了300元,A,B兩種產(chǎn)品原來的運費和現(xiàn)在的運費(單位:元∕件)如下表所示:品種AB原來的運費4525現(xiàn)在的運費3020(1)求每次運輸?shù)霓r(nóng)產(chǎn)品中A,B產(chǎn)品各有多少件;(2)由于該農(nóng)戶誠實守信,產(chǎn)品質(zhì)量好,加工廠決定提高該農(nóng)戶的供貨量,每次運送的總件數(shù)增加8件,但總件數(shù)中B產(chǎn)品的件數(shù)不得超過A產(chǎn)品件數(shù)的2倍,問產(chǎn)品件數(shù)增加后,每次運費最少需要多少元.23.(8分)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.求證:∠1=∠2;連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.24.(10分)如圖所示,某小組同學為了測量對面樓AB的高度,分工合作,有的組員測得兩樓間距離為40米,有的組員在教室窗戶處測得樓頂端A的仰角為30°,底端B的俯角為10°,請你根據(jù)以上數(shù)據(jù),求出樓AB的高度.(精確到0.1米)(參考數(shù)據(jù):sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.41,≈1.73)25.(10分)如圖,正方形ABCD中,M為BC上一點,F(xiàn)是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.求證:△ABM∽△EFA;若AB=12,BM=5,求DE的長.26.(12分)某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,這兩種臺燈的進價、售價如下表:類型價格進價(元/盞)售價(元/盞)A型3045B型5070(1)若商場預計進貨款為3500元,則這兩種臺燈各進多少盞.(2)若設商場購進A型臺燈m盞,銷售完這批臺燈所獲利潤為P,寫出P與m之間的函數(shù)關系式.(3)若商場規(guī)定B型燈的進貨數(shù)量不超過A型燈數(shù)量的4倍,那么A型和B型臺燈各進多少盞售完之后獲得利潤最多?此時利潤是多少元.27.(12分)如圖,一座鋼結構橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點,且AD⊥BC.(1)求sinB的值;(2)現(xiàn)需要加裝支架DE、EF,其中點E在AB上,BE=2AE,且EF⊥BC,垂足為點F,求支架DE的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】分析:根據(jù)有理數(shù)的除法法則計算可得.詳解:31÷(﹣1)=﹣(31÷1)=﹣1.故選A.點睛:本題主要考查了有理數(shù)的除法,解題的關鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負,并把絕對值相除.2除以任何一個不等于2的數(shù),都得2.2、B【解析】試題分析:解:當射線AD與⊙C相切時,△ABE面積的最大.連接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,連接CD,設EF=x,∴DE2=EF?OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故選B.考點:1.切線的性質(zhì);2.三角形的面積.3、D【解析】

首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉(zhuǎn)換可得鄰邊相等,則四邊形為菱形.所以根據(jù)菱形的性質(zhì)進行判斷.【詳解】解:四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,,,四邊形是平行四邊形(對邊相互平行的四邊形是平行四邊形);過點分別作,邊上的高為,.則(兩紙條相同,紙條寬度相同);平行四邊形中,,即,,即.故正確;平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).,(菱形的對角相等),故正確;,(平行四邊形的對邊相等),故正確;如果四邊形是矩形時,該等式成立.故不一定正確.故選:.【點睛】本題考查了菱形的判定與性質(zhì).注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.4、C【解析】試題分析:根據(jù)已知得出方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,再判斷即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,∴1+(﹣1)=0,即只有選項C正確;選項A、B、D都錯誤;故選C.5、A【解析】

如圖,過點C作CD∥a,再由平行線的性質(zhì)即可得出結論.【詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點睛】本題考查了平行線的性質(zhì)與判定,根據(jù)題意作出輔助線,構造出平行線是解答此題的關鍵.6、C【解析】試題分析:=,∴點M(m,﹣m2﹣1),∴點M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故選C.考點:二次函數(shù)的性質(zhì).7、C【解析】

眾數(shù),中位數(shù),方差等概念分析即可.【詳解】A、中獎是偶然現(xiàn)象,買再多也不一定中獎,故是錯誤的;B、全國中學生人口多,只需抽樣調(diào)查就行了,故是錯誤的;C、這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是8,故是正確的;D、方差越小越穩(wěn)定,甲組數(shù)據(jù)更穩(wěn)定,故是錯誤.故選C.【點睛】考核知識點:眾數(shù),中位數(shù),方差.8、B【解析】

將圓補充完整,利用圓周角定理找出點E的位置,再根據(jù)菱形的性質(zhì)即可得出△CME為等邊三角形,進而即可得出∠AEC的值.【詳解】將圓補充完整,找出點E的位置,如圖所示.∵弧AD所對的圓周角為∠ACD、∠AEC,∴圖中所標點E符合題意.∵四邊形∠CMEN為菱形,且∠CME=60°,∴△CME為等邊三角形,∴∠AEC=60°.故選B.【點睛】本題考查了菱形的性質(zhì)、等邊三角形的判定依據(jù)圓周角定理,根據(jù)圓周角定理結合圖形找出點E的位置是解題的關鍵.9、C【解析】試題分析:分式方程去分母轉(zhuǎn)化為整式方程,表示出整式方程的解,根據(jù)解為非負數(shù)及分式方程分母不為1求出a的范圍即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由題意得:≥1且≠2,解得:a≥1且a≠4,故選C.點睛:此題考查了分式方程的解,需注意在任何時候都要考慮分母不為1.10、B【解析】分析:首先得到當點E旋轉(zhuǎn)至y軸上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.詳解:如圖,當點E旋轉(zhuǎn)至y軸上時DE最??;∵△ABC是等邊三角形,D為BC的中點,∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點睛:本題考查了正多邊形的計算及等邊三角形的性質(zhì),解題的關鍵是從圖形中整理出直角三角形.11、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故選D.12、C【解析】

直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【詳解】A、關于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關于反比例函數(shù)y=-,當x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關于反比例函數(shù)y=-,當x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關函數(shù)的性質(zhì)是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據(jù)相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質(zhì).14、1【解析】

本題首先由等邊三角形的性質(zhì)及垂直定義得到∠DBE=60°,∠BEC=90°,再根據(jù)等腰三角形的性質(zhì)可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據(jù)三角形內(nèi)角和定理得出關系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結論.【詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.【點睛】本題主要考查等腰三角形的性質(zhì)及等邊三角形的性質(zhì)及垂直定義,解題的關鍵是根據(jù)三角形內(nèi)角和定理列出符合題意的簡易方程,從而求出結果.15、1【解析】

根據(jù)七巧板的性質(zhì)可得BI=IC=CH=HE,因為S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得點G到EF的距離為sin45°,根據(jù)平行四邊形的面積即可求解.【詳解】由七巧板性質(zhì)可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴BI?IC=1,∴BI=IC=,∴BC==1,∵EF=BC=1,F(xiàn)G=EH=BI=,∴點G到EF的距離為:,∴平行四邊形EFGH的面積=EF?=1×=1.故答案為1【點睛】本題考查了七巧板的性質(zhì)、等腰直角三角形的性質(zhì)及平行四邊形的面積公式,熟知七巧板的性質(zhì)是解決問題的關鍵.16、6【解析】

根據(jù)正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,∴邊長為6的正六邊形外接圓半徑是6,故答案為:6.【點睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形是解題的關鍵.17、3【解析】

根據(jù)中位線定理得到MN的最大時,AC最大,當AC最大時是直徑,從而求得直徑后就可以求得最大值.【詳解】解:因為點M、N分別是AB、BC的中點,由三角形的中位線可知:MN=AC,所以當AC最大為直徑時,MN最大.這時∠B=90°又因為∠ACB=45°,AB=6解得AC=6MN長的最大值是3.故答案為:3.【點睛】本題考查了三角形的中位線定理、等腰直角三角形的性質(zhì)及圓周角定理,解題的關鍵是了解當什么時候MN的值最大,難度不大.18、【解析】

根據(jù)被開方式是非負數(shù)列式求解即可.【詳解】依題意,得,解得:,故答案為:.【點睛】本題考查了函數(shù)自變量的取值范圍,函數(shù)有意義時字母的取值范圍一般從幾個方面考慮:①當函數(shù)解析式是整式時,字母可取全體實數(shù);②當函數(shù)解析式是分式時,考慮分式的分母不能為0;③當函數(shù)解析式是二次根式時,被開方數(shù)為非負數(shù).④對于實際問題中的函數(shù)關系式,自變量的取值除必須使表達式有意義外,還要保證實際問題有意義.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、0≤k≤且k≠1.【解析】

根據(jù)二次項系數(shù)非零、被開方數(shù)非負及根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可求出k的取值范圍.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,解得:0≤k≤且k≠1.∴k的取值范圍為0≤k≤且k≠1.【點睛】本題考查了根的判別式、二次根式以及一元二次方程的定義,根據(jù)二次項系數(shù)非零、被開方數(shù)非負及根的判別式△≥0,列出關于k的一元一次不等式組是解題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.20、(1)證明見解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】試題分析:(1)利用AAS證明△AQB≌△DPA,可得AP=BQ;(2)根據(jù)AQ﹣AP=PQ和全等三角形的對應邊相等可寫出4對線段.試題解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于點Q,DP⊥AQ于點P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考點:(1)正方形;(2)全等三角形的判定與性質(zhì).21、(1)證明見解析;(2)1.【解析】

(1)由同圓半徑相等和對頂角相等得∠OBP=∠APC,由圓的切線性質(zhì)和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,則∠ABP=∠ACB,根據(jù)等角對等邊得AB=AC;(2)設⊙O的半徑為r,分別在Rt△AOB和Rt△ACP中根據(jù)勾股定理列等式,并根據(jù)AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.【詳解】解:(1)連接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB與⊙O相切于點B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)設⊙O的半徑為r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,則⊙O的半徑為1.【點睛】本題考查了圓的切線的性質(zhì),圓的切線垂直于經(jīng)過切點的半徑;并利用勾股定理列等式,求圓的半徑;此類題的一般做法是:若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系;簡記作:見切點,連半徑,見垂直.22、(1)每次運輸?shù)霓r(nóng)產(chǎn)品中A產(chǎn)品有10件,每次運輸?shù)霓r(nóng)產(chǎn)品中B產(chǎn)品有30件,(2)產(chǎn)品件數(shù)增加后,每次運費最少需要1120元.【解析】

(1)設每次運輸?shù)霓r(nóng)產(chǎn)品中A產(chǎn)品有x件,每次運輸?shù)霓r(nóng)產(chǎn)品中B產(chǎn)品有y件,根據(jù)表中的數(shù)量關系列出關于x和y的二元一次方程組,解之即可,(2)設增加m件A產(chǎn)品,則增加了(8-m)件B產(chǎn)品,設增加供貨量后得運費為W元,根據(jù)(1)的結果結合圖表列出W關于m的一次函數(shù),再根據(jù)“總件數(shù)中B產(chǎn)品的件數(shù)不得超過A產(chǎn)品件數(shù)的2倍”,列出關于m的一元一次不等式,求出m的取值范圍,再根據(jù)一次函數(shù)的增減性即可得到答案.【詳解】解:(1)設每次運輸?shù)霓r(nóng)產(chǎn)品中A產(chǎn)品有x件,每次運輸?shù)霓r(nóng)產(chǎn)品中B產(chǎn)品有y件,根據(jù)題意得:,解得:,答:每次運輸?shù)霓r(nóng)產(chǎn)品中A產(chǎn)品有10件,每次運輸?shù)霓r(nóng)產(chǎn)品中B產(chǎn)品有30件,(2)設增加m件A產(chǎn)品,則增加了(8-m)件B產(chǎn)品,設增加供貨量后得運費為W元,增加供貨量后A產(chǎn)品的數(shù)量為(10+m)件,B產(chǎn)品的數(shù)量為30+(8-m)=(38-m)件,根據(jù)題意得:W=30(10+m)+20(38-m)=10m+1060,由題意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函數(shù)W隨m的增大而增大∴當m=6時,W最小=1120,答:產(chǎn)品件數(shù)增加后,每次運費最少需要1120元.【點睛】本題考查了一次函數(shù)的應用,二元一次方程組的應用和一元一次不等式得應用,解題的關鍵:(1)正確根據(jù)等量關系列出二元一次方程組,(2)根據(jù)數(shù)量關系列出一次函數(shù)和不等式,再利用一次函數(shù)的增減性求最值.23、(1)證明見解析;(2)四邊形BCDE是菱形,理由見解析.【解析】

(1)證明△ADC≌△ABC后利用全等三角形的對應角相等證得結論.(2)首先判定四邊形BCDE是平行四邊形,然后利用對角線垂直的平行四邊形是菱形判定菱形即可.【詳解】解:(1)證明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四邊形BCDE是菱形,理由如下:如答圖,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四邊形DEBC是平行四邊形.∵AC⊥BD,∴四邊形DEBC是菱形.【點睛】考點:1.全等三角形的判定和性質(zhì);2.線段垂直平分線的性質(zhì);3.菱形的判定.24、30.3米.【解析】試題分析:過點D作DE⊥AB于點E,在Rt△ADE中,求出AE的長,在Rt△DEB中,求出BE的長即可得.試題解析:過點D作DE⊥AB于點E,在Rt△ADE中,∠AED=90°,tan∠1=,∠1=30°,∴AE=DE×tan∠1=40×tan30°=40×≈40×1.73×≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=,∠2=10°,∴BE=DE×tan∠2=40×tan10°≈40×0.18=7.2∴AB=AE+BE≈23.1+7.2=30.3米.25、(1)見解析;(2)4.1【解析】

試題分析:(1)由正方形的性質(zhì)得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結論;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長.試題解析:(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論