吉林省普通高中2025年第二學(xué)期高三年級(jí)第二次質(zhì)量調(diào)查數(shù)學(xué)試題學(xué)科試卷含解析_第1頁(yè)
吉林省普通高中2025年第二學(xué)期高三年級(jí)第二次質(zhì)量調(diào)查數(shù)學(xué)試題學(xué)科試卷含解析_第2頁(yè)
吉林省普通高中2025年第二學(xué)期高三年級(jí)第二次質(zhì)量調(diào)查數(shù)學(xué)試題學(xué)科試卷含解析_第3頁(yè)
吉林省普通高中2025年第二學(xué)期高三年級(jí)第二次質(zhì)量調(diào)查數(shù)學(xué)試題學(xué)科試卷含解析_第4頁(yè)
吉林省普通高中2025年第二學(xué)期高三年級(jí)第二次質(zhì)量調(diào)查數(shù)學(xué)試題學(xué)科試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

吉林省普通高中2025年第二學(xué)期高三年級(jí)第二次質(zhì)量調(diào)查數(shù)學(xué)試題學(xué)科試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.2.tan570°=()A. B.- C. D.3.已知(為虛數(shù)單位,為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在().A.第一象限 B.第二象限 C.第三象限 D.第四象限4.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績(jī)X近似服從正態(tài)分布,且.從中隨機(jī)抽取參加此次考試的學(xué)生500名,估計(jì)理科數(shù)學(xué)成績(jī)不低于110分的學(xué)生人數(shù)約為()A.40 B.60 C.80 D.1005.如圖,在△ABC中,點(diǎn)M是邊BC的中點(diǎn),將△ABM沿著AM翻折成△AB'M,且點(diǎn)B'不在平面AMC內(nèi),點(diǎn)P是線段B'C上一點(diǎn).若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過(guò)△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心6.集合,則集合的真子集的個(gè)數(shù)是A.1個(gè) B.3個(gè) C.4個(gè) D.7個(gè)7.一個(gè)超級(jí)斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項(xiàng)起,每一項(xiàng)都等于前面所有項(xiàng)之和(例如:1,3,4,8,16…).則首項(xiàng)為2,某一項(xiàng)為2020的超級(jí)斐波那契數(shù)列的個(gè)數(shù)為()A.3 B.4 C.5 D.68.已知函數(shù)則函數(shù)的圖象的對(duì)稱(chēng)軸方程為()A. B.C. D.9.已知函數(shù)的定義域?yàn)?,且,?dāng)時(shí),.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.810.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.11.已知集合,則元素個(gè)數(shù)為()A.1 B.2 C.3 D.412.已知復(fù)數(shù),則的虛部是()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線C:()的左、右焦點(diǎn)為,,為雙曲線C上一點(diǎn),且,若線段與雙曲線C交于另一點(diǎn)A,則的面積為_(kāi)_____.14.圖(1)是第七屆國(guó)際數(shù)學(xué)教育大會(huì)(ICME-7)的會(huì)徽?qǐng)D案,它是由一串直角三角形演化而成的(如圖(2)),其中,則的值是______.15.已知函數(shù)為偶函數(shù),則_____.16.在四面體中,與都是邊長(zhǎng)為2的等邊三角形,且平面平面,則該四面體外接球的體積為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓經(jīng)過(guò)點(diǎn),離心率為.(1)求橢圓的方程;(2)經(jīng)過(guò)點(diǎn)且斜率存在的直線交橢圓于兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng).連接.求證:存在實(shí)數(shù),使得成立.18.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且是與的等差中項(xiàng).(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項(xiàng)和為,求滿足的最小正整數(shù)的值.19.(12分)已知點(diǎn)為圓:上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過(guò)作直線的垂線(當(dāng)、重合時(shí),直線約定為軸),垂足為,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求點(diǎn)的軌跡的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程為,連接并延長(zhǎng)交于,求的最大值.20.(12分)在中,,,.求邊上的高.①,②,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問(wèn)題中并作答.21.(12分)已知三棱柱中,,是的中點(diǎn),,.(1)求證:;(2)若側(cè)面為正方形,求直線與平面所成角的正弦值.22.(10分)如圖,在長(zhǎng)方體中,,為的中點(diǎn),為的中點(diǎn),為線段上一點(diǎn),且滿足,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.2.A【解析】

直接利用誘導(dǎo)公式化簡(jiǎn)求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.本題考查三角函數(shù)的恒等變換及化簡(jiǎn)求值,主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.3.D【解析】

設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限.故選:D.本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識(shí),考查學(xué)生的基本計(jì)算能力,是一道容易題.4.D【解析】

由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績(jī)X近似服從正態(tài)分布,則正態(tài)分布曲線的對(duì)稱(chēng)軸為,根據(jù)正態(tài)分布曲線的對(duì)稱(chēng)性,求得,所以該市某校有500人中,估計(jì)該校數(shù)學(xué)成績(jī)不低于110分的人數(shù)為人,故選:.本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問(wèn)題的能力,難度容易.5.A【解析】

根據(jù)題意P到兩個(gè)平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個(gè)平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點(diǎn).故選:A.本題考查了二面角,等體積法,意在考查學(xué)生的計(jì)算能力和空間想象能力.6.B【解析】

由題意,結(jié)合集合,求得集合,得到集合中元素的個(gè)數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個(gè)數(shù)為個(gè),故選B.本題主要考查了集合的運(yùn)算和集合中真子集的個(gè)數(shù)個(gè)數(shù)的求解,其中作出集合的運(yùn)算,得到集合,再由真子集個(gè)數(shù)的公式作出計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.7.A【解析】

根據(jù)定義,表示出數(shù)列的通項(xiàng)并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個(gè)數(shù).【詳解】由題意可知首項(xiàng)為2,設(shè)第二項(xiàng)為,則第三項(xiàng)為,第四項(xiàng)為,第五項(xiàng)為第n項(xiàng)為且,則,因?yàn)?,?dāng)?shù)闹悼梢詾?;即?個(gè)這種超級(jí)斐波那契數(shù)列,故選:A.本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對(duì)題意理解要準(zhǔn)確,屬于中檔題.8.C【解析】

,將看成一個(gè)整體,結(jié)合的對(duì)稱(chēng)性即可得到答案.【詳解】由已知,,令,得.故選:C.本題考查余弦型函數(shù)的對(duì)稱(chēng)性的問(wèn)題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.9.A【解析】

根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域?yàn)椋?,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.本題考查了指數(shù)冪的運(yùn)算及化簡(jiǎn),利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.10.D【解析】

利用復(fù)數(shù)的除法運(yùn)算,化簡(jiǎn)復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.11.B【解析】

作出兩集合所表示的點(diǎn)的圖象,可得選項(xiàng).【詳解】由題意得,集合A表示以原點(diǎn)為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點(diǎn),作出兩集合所表示的點(diǎn)的示意圖如下圖所示,得出兩個(gè)圖象有兩個(gè)交點(diǎn):點(diǎn)A和點(diǎn)B,所以?xún)蓚€(gè)集合有兩個(gè)公共元素,所以元素個(gè)數(shù)為2,故選:B.本題考查集合的交集運(yùn)算,關(guān)鍵在于作出集合所表示的點(diǎn)的圖象,再運(yùn)用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.12.C【解析】

化簡(jiǎn)復(fù)數(shù),分子分母同時(shí)乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C本小題主要考查復(fù)數(shù)的乘法、除法運(yùn)算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點(diǎn)A坐標(biāo),借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點(diǎn)A坐標(biāo)為,所以.本題主要考查直線與雙曲線的位置關(guān)系,考查雙曲線方程的求解,考查求三角形面積,考查學(xué)生的計(jì)算能力,難度較難.14.【解析】

先求出向量和夾角的余弦值,再由公式即得.【詳解】如圖,過(guò)點(diǎn)作的平行線交于點(diǎn),那么向量和夾角為,,,,,且是直角三角形,,同理得,,.故答案為:本題主要考查平面向量數(shù)量積,解題關(guān)鍵是找到向量和的夾角.15.【解析】

根據(jù)偶函數(shù)的定義列方程,化簡(jiǎn)求得的值.【詳解】由于為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運(yùn)算求解能力,屬于中檔題.16.【解析】

先確定球心的位置,結(jié)合勾股定理可求球的半徑,進(jìn)而可得球的面積.【詳解】取的外心為,設(shè)為球心,連接,則平面,取的中點(diǎn),連接,,過(guò)做于點(diǎn),易知四邊形為矩形,連接,,設(shè),.連接,則,,三點(diǎn)共線,易知,所以,.在和中,,,即,,所以,,得.所以.本題主要考查幾何體的外接球問(wèn)題,外接球的半徑的求解一般有兩個(gè)思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長(zhǎng)方體外接球半徑是其對(duì)角線的一半.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)證明見(jiàn)解析【解析】

(1)由點(diǎn)可得,由,根據(jù)即可求解;(2)設(shè)直線的方程為,聯(lián)立可得,設(shè),由韋達(dá)定理可得,再根據(jù)直線的斜率公式求得;由點(diǎn)B與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱(chēng),可設(shè),可求得,則,即可求證.【詳解】解:(1)由題意可知,,又,得,所以橢圓的方程為(2)證明:設(shè)直線的方程為,聯(lián)立,可得,設(shè),則有,因?yàn)?所以,又因?yàn)辄c(diǎn)B與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱(chēng),所以,即,則有,由點(diǎn)在橢圓上,得,所以,所以,即,所以存在實(shí)數(shù),使成立本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線的斜率公式的應(yīng)用,考查運(yùn)算能力.18.(1)見(jiàn)解析,(2)最小正整數(shù)的值為35.【解析】

(1)由等差中項(xiàng)可知,當(dāng)時(shí),得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進(jìn)而求出最小值.【詳解】解析:(1)由題意可得,當(dāng)時(shí),,∴,,當(dāng)時(shí),,整理可得,∴是首項(xiàng)為1,公差為1的等差數(shù)列,∴,.(2)由(1)可得,∴,解得,∴最小正整數(shù)的值為35.本題考查了等差中項(xiàng),考查了等差數(shù)列的定義,考查了與的關(guān)系,考查了裂項(xiàng)相消求和.當(dāng)已知有與的遞推關(guān)系時(shí),常代入進(jìn)行整理.證明數(shù)列是等差數(shù)列時(shí),一般借助數(shù)列,即后一項(xiàng)與前一項(xiàng)的差為常數(shù).19.(1);(2)【解析】

(1)設(shè)的極坐標(biāo)為,在中,有,即可得結(jié)果;(2)設(shè)射線:,,圓的極坐標(biāo)方程為,聯(lián)立兩個(gè)方程,可求出,聯(lián)立可得,則計(jì)算可得,利用三角函數(shù)的性質(zhì)可得最值.【詳解】(1)設(shè)的極坐標(biāo)為,在中,有,點(diǎn)的軌跡的極坐標(biāo)方程為;(2)設(shè)射線:,,圓的極坐標(biāo)方程為,由得:,由得:,,,當(dāng),即時(shí),,的最大值為.本題考查極坐標(biāo)方程的應(yīng)用,考查三角函數(shù)性質(zhì)的應(yīng)用,是中檔題.20.詳見(jiàn)解析【解析】

選擇①,利用正弦定理求得,利用余弦定理求得,再計(jì)算邊上的高.選擇②,利用正弦定理得出,由余弦定理求出,再求邊上的高.選擇③,利用余弦定理列方程求出,再計(jì)算邊上的高.【詳解】選擇①,在中,由正弦定理得,即,解得;由余弦定理得,即,化簡(jiǎn)得,解得或(舍去);所以邊上的高為.選擇②,在中,由正弦定理得,又因?yàn)?,所以,即;由余弦定理得,即,化?jiǎn)得,解得或(舍去);所以邊上的高為.選擇③,在中,由,得;由余弦定理得,即,化簡(jiǎn)得,解得或(舍去);所以邊上的高為.本小題主要考查真閑的了、余弦定理解三角形,屬于中檔題.21.(1)證明見(jiàn)解析(2)【解析】

(1)取的中點(diǎn),連接,,證明平面得出,再得出;(2)建立空間坐標(biāo)系,求出平面的法向量,計(jì)算,即可得出答案.【詳解】(1)證明:取的中點(diǎn),連接,,,,,,,故,又,,平面,平面,,,分別是,的中點(diǎn),,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內(nèi)作直線的垂線,以為原點(diǎn),以,,為所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設(shè)平面的法向量為,,,則,即,令可得:,,,,.直線與平面所成角的正弦值為,.本題主要考查了線面垂直的判定與性質(zhì),考查空間向量與空間角的計(jì)算,屬于中檔題.22.(1)證明見(jiàn)解析(2)【解析】

(1)解法一:作的中點(diǎn),連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進(jìn)而證得平面.解法二:建立空間直角坐標(biāo)系,通過(guò)證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計(jì)算出二面角的余弦值.【詳解】(1)法一:作的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論