山東省濟寧市馬營鎮(zhèn)初級中學2024-2025學年初三(數學試題理)4月第一次綜合練習試卷含解析_第1頁
山東省濟寧市馬營鎮(zhèn)初級中學2024-2025學年初三(數學試題理)4月第一次綜合練習試卷含解析_第2頁
山東省濟寧市馬營鎮(zhèn)初級中學2024-2025學年初三(數學試題理)4月第一次綜合練習試卷含解析_第3頁
山東省濟寧市馬營鎮(zhèn)初級中學2024-2025學年初三(數學試題理)4月第一次綜合練習試卷含解析_第4頁
山東省濟寧市馬營鎮(zhèn)初級中學2024-2025學年初三(數學試題理)4月第一次綜合練習試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省濟寧市馬營鎮(zhèn)初級中學2024-2025學年初三(數學試題理)4月第一次綜合練習試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個標志中,是軸對稱圖形的是()A. B. C. D.2.若正多邊形的一個內角是150°,則該正多邊形的邊數是()A.6B.12C.16D.183.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點,C(x1,m)和D(x2,n)也是拋物線上的點,且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n4.y=(m﹣1)x|m|+3m表示一次函數,則m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣15.函數y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>26.如圖,正比例函數的圖像與反比例函數的圖象相交于A、B兩點,其中點A的橫坐標為2,當時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>27.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.8.如圖,點A,B在反比例函數y=1x(x>0)的圖象上,點C,D在反比例函數y=A.4 B.3 C.2 D.39.已知一個等腰三角形的兩邊長分別是2和4,則該等腰三角形的周長為()A.8或10 B.8 C.10 D.6或1210.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π二、填空題(共7小題,每小題3分,滿分21分)11.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內的地面寬度為,兩側離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)12.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.13.(11·湖州)如圖,已知A、B是反比例函數(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設四邊形OMPN的面積為S,P點運動時間為t,則S關于t的函數圖象大致為14.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2016的值為_____.15.對于實數a,b,我們定義符號max{a,b}的意義為:當a≥b時,max{a,b}=a;當a<b時,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若關于x的函數為y=max{x+3,﹣x+1},則該函數的最小值是_____.16.因式分解:x2﹣4=.17.已知反比例函數y=,當x>0時,y隨x增大而減小,則m的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.解:由分母為﹣x2+1,可設﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數)的和的形式.試說明的最小值為1.19.(5分)如圖,在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的長;設,,求向量(用向量、表示).20.(8分)某地區(qū)教育部門為了解初中數學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統計圖和條形統計圖(均不完整).請根據統計圖中的信息解答下列問題:本次抽查的樣本容量是

;在扇形統計圖中,“主動質疑”對應的圓心角為

度;將條形統計圖補充完整;如果該地區(qū)初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?21.(10分)某中學開展“漢字聽寫大賽”活動,為了解學生的參與情況,在該校隨機抽取了四個班級學生進行調查,將收集的數據整理并繪制成圖1和圖2兩幅尚不完整的統計圖,請根據圖中的信息,解答下列問題:(1)這四個班參與大賽的學生共__________人;(2)請你補全兩幅統計圖;(3)求圖1中甲班所對應的扇形圓心角的度數;(4)若四個班級的學生總數是160人,全校共2000人,請你估計全校的學生中參與這次活動的大約有多少人.22.(10分)某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.23.(12分)太陽能光伏建筑是現代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結果精確到0.1米)24.(14分)如圖,點P是⊙O外一點,請你用尺規(guī)畫出一條直線PA,使得其與⊙O相切于點A,(不寫作法,保留作圖痕跡)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、B【解析】設多邊形的邊數為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.3、C【解析】分析:將一般式配方成頂點式,得出對稱軸方程根據拋物線與x軸交于兩點,得出求得距離對稱軸越遠,函數的值越大,根據判斷出它們與對稱軸之間的關系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點,∴當時,得∵∴∴故選C.點睛:考查二次函數的圖象以及性質,開口向上,距離對稱軸越遠的點,對應的函數值越大,4、B【解析】由一次函數的定義知,|m|=1且m-1≠0,所以m=-1,故選B.5、D【解析】

根據被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數y=有意義,∴x-20,即x>2故選D本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關鍵.6、D【解析】

先根據反比例函數與正比例函數的性質求出B點坐標,再由函數圖象即可得出結論.【詳解】解:∵反比例函數與正比例函數的圖象均關于原點對稱,

∴A、B兩點關于原點對稱,

∵點A的橫坐標為1,∴點B的橫坐標為-1,

∵由函數圖象可知,當-1<x<0或x>1時函數y1=k1x的圖象在的上方,

∴當y1>y1時,x的取值范圍是-1<x<0或x>1.

故選:D.本題考查的是反比例函數與一次函數的交點問題,能根據數形結合求出y1>y1時x的取值范圍是解答此題的關鍵.7、A【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.8、B【解析】

首先根據A,B兩點的橫坐標,求出A,B兩點的坐標,進而根據AC//BD//y軸,及反比例函數圖像上的點的坐標特點得出C,D兩點的坐標,從而得出AC,BD的長,根據三角形的面積公式表示出S△OAC,S△ABD的面積,再根據△OAC與△ABD的面積之和為32【詳解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y軸,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC與△ABD的面積之和為32∴12(k-1)×1+12(k2-1故答案為B.:此題考查了反比例函數系數k的幾何意義,以及反比例函數圖象上點的坐標特征,熟練掌握反比例函數k的幾何意義是解本題的關鍵.9、C【解析】試題分析:①4是腰長時,三角形的三邊分別為4、4、4,∵4+4=4,∴不能組成三角形,②4是底邊時,三角形的三邊分別為4、4、4,能組成三角形,周長=4+4+4=4,綜上所述,它的周長是4.故選C.考點:4.等腰三角形的性質;4.三角形三邊關系;4.分類討論.10、C【解析】

根據題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.本題考查扇形面積的計算、正方形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.二、填空題(共7小題,每小題3分,滿分21分)11、9.1【解析】

建立直角坐標系,得到二次函數,門洞高度即為二次函數的頂點的縱坐標【詳解】如圖,以地面為x軸,門洞中點為O點,畫出y軸,建立直角坐標系由題意可知各點坐標為A(-4,0)B(4,0)D(-3,4)設拋物線解析式為y=ax2+c(a≠0)把B、D兩點帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m本題考查二次函數的簡單應用,能夠建立直角坐標系解出二次函數解析式是本題關鍵12、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.13、A【解析】試題分析:①當點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數,開口向上;②當點P在AB上運動時,設P點坐標為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數綜合題;2.動點問題的函數圖象.14、2.【解析】

把x=m代入方程,求出2m2﹣3m=2,再變形后代入,即可求出答案.【詳解】解:∵m是方程2x2﹣3x﹣2=0的一個根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案為:2.本題考查了求代數式的值和一元二次方程的解,解此題的關鍵是能求出2m2﹣3m=2.15、2【解析】試題分析:當x+3≥﹣x+1,即:x≥﹣1時,y=x+3,∴當x=﹣1時,ymin=2,當x+3<﹣x+1,即:x<﹣1時,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴ymin=2,16、(x+2)(x-2).【解析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考點:因式分解-運用公式法17、m>1.【解析】分析:根據反比例函數y=,當x>0時,y隨x增大而減小,可得出m﹣1>0,解之即可得出m的取值范圍.詳解:∵反比例函數y=,當x>0時,y隨x增大而減小,∴m﹣1>0,解得:m>1.故答案為m>1.點睛:本題考查了反比例函數的性質,根據反比例函數的性質找出m﹣1>0是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)=x2+7+(2)見解析【解析】

(1)根據閱讀材料中的方法將分式拆分成一個整式與一個分式(分子為整數)的和的形式即可;(2)原式分子變形后,利用不等式的性質求出最小值即可.【詳解】(1)設﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,則原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;當x=0時,取得最小值0,∴當x=0時,x2+7+最小值為1,即原式的最小值為1.19、(1)1;(2).【解析】

(1)由平行線截線段成比例求得AE的長度;(2)利用平面向量的三角形法則解答.【詳解】(1)如圖,∵DE∥BC,且DE=BC,∴.又AC=6,∴AE=1.(2)∵,,∴.又DE∥BC,DE=BC,∴考查了平面向量,需要掌握平面向量的三角形法則和平行向量的定義.20、(1)560;(2)54;(3)補圖見解析;(4)18000人【解析】

(1)本次調查的樣本容量為224÷40%=560(人);(2)“主動質疑”所在的扇形的圓心角的度數是:360°×84560=54o;(3)“講解題目”的人數是:560?84?168?224=84(人).(4)60000×=18000(人),

答:在課堂中能“獨立思考”的學生約有18000人.21、(1)100;(2)見解析;(3)108°;(4)1250.【解析】試題分析:(1)根據乙班參賽30人,所占比為20%,即可求出這四個班總人數;(2)根據丁班參賽35人,總人數是100,即可求出丁班所占的百分比,再用整體1減去其它所占的百分比,即可得出丙所占的百分比,再乘以參賽得總人數,即可得出丙班參賽得人數,從而補全統計圖;(3)根據甲班級所占的百分比,再乘以360°,即可得出答案;(4)根據樣本估計總體,可得答案.試題解析:(1)這四個班參與大賽的學生數是:30÷30%=100(人);故答案為100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,則丙班得人數是:100×15%=15(人);如圖:(3)甲班級所對應的扇形圓心角的度數是:30%×360°=108°;(4)根據題意得:2000×=1250(人).答:全校的學生中參與這次活動的大約有1250人.考點:條形統計圖;扇形統計圖;樣本估計總體.22、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論