山東省青島市平度市2025年初三第十次模擬考試數學試題試卷含解析_第1頁
山東省青島市平度市2025年初三第十次模擬考試數學試題試卷含解析_第2頁
山東省青島市平度市2025年初三第十次模擬考試數學試題試卷含解析_第3頁
山東省青島市平度市2025年初三第十次模擬考試數學試題試卷含解析_第4頁
山東省青島市平度市2025年初三第十次模擬考試數學試題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省青島市平度市2025年初三第十次模擬考試數學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.2.下列各式計算正確的是()A. B. C. D.3.如圖是一個正方體展開圖,把展開圖折疊成正方體后,“愛”字一面相對面上的字是()A.美 B.麗 C.泗 D.陽4.如圖圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.第24屆冬奧會將于2022年在北京和張家口舉行,冬奧會的項目有滑雪(如跳臺滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現將這5張卡片洗勻后正面向下放在桌子上,從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是()A. B. C. D.6.如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為()A.6 B.8C.10 D.127.滴滴快車是一種便捷的出行工具,計價規(guī)則如下表:計費項目

里程費

時長費

遠途費

單價

1.8元/公里

0.3元/分鐘

0.8元/公里

注:車費由里程費、時長費、遠途費三部分構成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(含7公里)不收遠途費,超過7公里的,超出部分每公里收0.8元.

小王與小張各自乘坐滴滴快車,行車里程分別為6公里與8.5公里,如果下車時兩人所付車費相同,那么這兩輛滴滴快車的行車時間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘8.據國土資源部數據顯示,我國是全球“可燃冰”資源儲量最多的國家之一,海、陸總儲量約為39000000000噸油當量,將39000000000用科學記數法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×1099.若關于的一元二次方程有兩個不相等的實數根,則一次函數的圖象可能是:A. B. C. D.10.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,二、填空題(本大題共6個小題,每小題3分,共18分)11.若函數y=m-2x12.如圖,矩形ABCD的對角線BD經過的坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數y=的圖象上,若點A的坐標為(﹣2,﹣3),則k的值為_____.13.如圖,以點O為圓心的兩個圓中,大圓的弦AB切小圓于點C,OA交小圓于點D,若OD=2,tan∠OAB=,則AB的長是________.14.為增強學生身體素質,提高學生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽,根據題意,可列方程為_____.15.若,則=.16.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=1DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結論的是_____.三、解答題(共8題,共72分)17.(8分)如圖,四邊形ABCD的四個頂點分別在反比例函數與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為1.當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時m,n之間的數量關系;若不能,試說明理由.18.(8分)如圖,在中,以為直徑的⊙交于點,過點作于點,且.()判斷與⊙的位置關系并說明理由;()若,,求⊙的半徑.19.(8分)小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).如果小明第一題不使用“求助”,那么小明答對第一道題的概率是.如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)20.(8分)由于霧霾天氣對人們健康的影響,市場上的空氣凈化器成了熱銷產品.某公司經銷一種空氣凈化器,每臺凈化器的成本價為200元.經過一段時間的銷售發(fā)現,每月的銷售量y(臺)與銷售單價x(元)的關系為y=﹣2x+1.(1)該公司每月的利潤為w元,寫出利潤w與銷售單價x的函數關系式;(2)若要使每月的利潤為40000元,銷售單價應定為多少元?(3)公司要求銷售單價不低于250元,也不高于400元,求該公司每月的最高利潤和最低利潤分別為多少?21.(8分)如圖所示,小王在校園上的A處正面觀測一座教學樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結果精確到0.1m).22.(10分)如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數y=(k≠0)的圖象經過點B.求反比例函數的解析式;若點E恰好落在反比例函數y=上,求平行四邊形OBDC的面積.23.(12分)某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據調查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:(1)在這次調查中,喜歡籃球項目的同學有______人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為______%,如果學校有800名學生,估計全校學生中有______人喜歡籃球項目.(2)請將條形統(tǒng)計圖補充完整.(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現要從中隨機抽取2名同學代表班級參加校籃球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.24.如圖,拋物線y=x2+bx+c與x軸交于點A(﹣1,0),B(4,0)與y軸交于點C,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P作x軸的垂線1,交拋物線與點Q.求拋物線的解析式;當點P在線段OB上運動時,直線1交BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;在點P運動的過程中,坐標平面內是否存在點Q,使△BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

先分別表示出小進和小俊跑800米的時間,再根據小進比小俊少用了40秒列出方程即可.【詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.本題考查了列分式方程解應用題,能找出題目中的相等關系式是解此題的關鍵.2、B【解析】A選項中,∵不是同類二次根式,不能合并,∴本選項錯誤;B選項中,∵,∴本選項正確;C選項中,∵,而不是等于,∴本選項錯誤;D選項中,∵,∴本選項錯誤;故選B.3、D【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點作答.【詳解】解:正方體的表面展開圖,相對的面之間一定相隔一個正方形,“愛”字一面相對面上的字是“陽”;故本題答案為:D.本題主要考查了正方體相對兩個面上的文字,注意正方體的空間圖形是解題的關鍵.4、B【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A不正確;B、既是軸對稱圖形,又是中心對稱圖形,故B正確;C、是軸對稱圖形,不是中心對稱圖形,故C不正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D不正確.故選B.本題考查了軸對稱圖形和中心對稱圖形的概念,以及對軸對稱圖形和中心對稱圖形的認識.5、B【解析】

先找出滑雪項目圖案的張數,結合5張形狀、大小、質地均相同的卡片,再根據概率公式即可求解.【詳解】∵有5張形狀、大小、質地均相同的卡片,滑雪項目圖案的有高山滑雪和單板滑雪2張,∴從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是.故選B.本題考查了簡單事件的概率.用到的知識點為:概率=所求情況數與總情況數之比.6、D【解析】

根據正方形的性質可得出AB∥CD,進而可得出△ABF∽△GDF,根據相似三角形的性質可得出=2,結合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.本題考查了相似三角形的判定與性質、正方形的性質,利用相似三角形的性質求出AF的長度是解題的關鍵.7、D【解析】

設小王的行車時間為x分鐘,小張的行車時間為y分鐘,根據計價規(guī)則計算出小王的車費和小張的車費,建立方程求解.【詳解】設小王的行車時間為x分鐘,小張的行車時間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.本題考查列方程解應用題,讀懂表格中的計價規(guī)則是解題的關鍵.8、A【解析】

用科學記數法表示較大的數時,一般形式為a×10n,其中1≤|a|<10,n為整數,據此判斷即可.【詳解】39000000000=3.9×1.故選A.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.9、B【解析】

由方程有兩個不相等的實數根,可得,解得,即異號,當時,一次函數的圖象過一三四象限,當時,一次函數的圖象過一二四象限,故答案選B.10、D【解析】

先將方程左邊提公因式x,解方程即可得答案.【詳解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故選:D.本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、m>2【解析】試題分析:有函數y=m考點:反比例函數的性質.12、1或﹣1【解析】

根據矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據反比例函數比例系數的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.本題考查了反比例函數k的幾何意義、矩形的性質、一元二次方程的解法,解題的關鍵是判斷出S四邊形CEOF=S四邊形HAGO.13、8【解析】

如圖,連接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解決問題.【詳解】解:如圖,連接OC.∵AB是⊙O切線,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=,∴,∴AC=4,∴AB=2AC=8,故答案為8本題考查切線的性質、垂徑定理、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形,屬于中考??碱}型.14、x(x﹣1)=1【解析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【點睛】本題考查了一元二次方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.15、1.【解析】試題分析:有意義,必須,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案為1.考點:二次根式有意義的條件.16、①②③【解析】

根據翻折變換的性質和正方形的性質可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.

理由:

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設BG=FG=x,則CG=6-x.在直角△ECG中,根據勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯誤.理由:∵S△GCE=GC?CE=×1×4=6

∵GF=1,EF=2,△GFC和△FCE等高,

∴S△GFC:S△FCE=1:2,

∴S△GFC=×6=≠1.

故④不正確.

∴正確的個數有1個:①②③.故答案為①②③本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,平行線的判定,三角形的面積計算,有一定的難度.三、解答題(共8題,共72分)17、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】

(1)①先確定出點A,B坐標,再利用待定系數法即可得出結論;

②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結論;

(2)先確定出B(1,),D(1,),進而求出點P的坐標,再求出A,C坐標,最后用AC=BD,即可得出結論.【詳解】(1)①如圖1,,反比例函數為,當時,,,當時,,,,設直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點是線段的中點,,當時,由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當四邊形是正方形,記,的交點為,,當時,,,,,,,,,,.此題是反比例函數綜合題,主要考查了待定系數法,平行四邊形的判定,菱形的判定和性質,正方形的性質,判斷出四邊形ABCD是平行四邊形是解本題的關鍵.18、(1)DE與⊙O相切,詳見解析;(2)5【解析】

(1)根據直徑所對的圓心角是直角,再結合所給條件∠BDE=∠A,可以推導出∠ODE=90°,說明相切的位置關系。(2)根據直徑所對的圓心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE=90°可以推導出∠DAB=∠C,可判定△ABC是等腰三角形,再根據BD⊥AC可知D是AC的中點,從而得出AD的長度,再在Rt△ADB中計算出直徑AB的長,從而算出半徑?!驹斀狻浚?)連接OD,在⊙O中,因為AB是直徑,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因為∠BDE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD過圓心,D是圓上一點,故DE是⊙O切線上的一段,因此位置關系是直線DE與⊙O相切;(2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,則∠BDE+∠ABD=90°,因為DE⊥BC,所以∠DEB=90°,故在△BDE中,有∠BDE+∠DBE=90°,則∠ABD=∠DBE,又因為BD⊥AC,即∠ADB=∠CDB=90°,所以∠DAB=∠C,故△ABC是等腰三角形,BD是等腰△ABC底邊BC上的高,則D是AC的中點,故AD=AC=×16=8,在Rt△ABD中,tanA===,可解得BD=6,由勾股定理可得AB===10,AB為直徑,所以⊙O的半徑是5.本題主要考查圓中的計算問題和與圓有關的位置關系,解本題的要點在于求出AD的長,從而求出AB的長.19、(1);(2);(3)第一題.【解析】

(1)由第一道單選題有3個選項,直接利用概率公式求解即可求得答案;(2)畫出樹狀圖,再由樹狀圖求得所有等可能的結果與小明順利通關的情況,繼而利用概率公式即可求得答案;(3)由如果在第一題使用“求助”小明順利通關的概率為:;如果在第二題使用“求助”小明順利通關的概率為:;即可求得答案.【詳解】(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率=;故答案為;(2)畫樹狀圖為:共有9種等可能的結果數,其中兩個都正確的結果數為1,所以小明順利通關的概率為;(3)建議小明在第一題使用“求助”.理由如下:小明將“求助”留在第一題,畫樹狀圖為:小明將“求助”留在第一題使用,小明順利通關的概率=,因為>,所以建議小明在第一題使用“求助”.本題考查的是概率,熟練掌握樹狀圖法和概率公式是解題的關鍵.20、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利潤為40000元,銷售單價應定為300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,當x=250時y=﹣2×2502+1400×250﹣200000=25000;故最高利潤為45000元,最低利潤為25000元.【解析】試題分析:(1)根據銷售利潤=每天的銷售量×(銷售單價-成本價),即可列出函數關系式;(2)令y=40000代入解析式,求出滿足條件的x的值即可;(3)根據(1)得到銷售利潤的關系式,利用配方法可求最大值.試題解析:(1)由題意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;(2)令w=-2x2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利潤為40000元,銷售單價應定為300或400元;(3)y=-2x2+1400x-200000=-2(x-350)2+45000,當x=250時y=-2×2502+1400×250-200000=25000;故最高利潤為45000元,最低利潤為25000元.21、大型標牌上端與下端之間的距離約為3.5m.【解析】試題分析:將題目中的仰俯角轉化為直角三角形的內角的度數,分別求得CE和BE的長,然后求得DE的長,用CE的長減去DE的長即可得到上端和下端之間的距離.試題解析:設AB,CD的延長線相交于點E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE==11.54,∴CD=CE﹣DE=15﹣11.54≈3.5(m),答:大型標牌上端與下端之間的距離約為3.5m.22、(1)y=;(2)1;【解析】

(1)把點B的坐標代入反比例解析式求得k值,即可求得反比例函數的解析式;(2)根據點B(3,4)、C(m,0)的坐標求得邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數的解析式求得m的值,根據平行四邊形的面積公式即可求解.【詳解】(1)把B坐標代入反比例解析式得:k=12,則反比例函數解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點E坐標為(,2),將點E的坐標代入反比例函數得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.本題為反比例函數的綜合應用,考查的知識點有待定系數法、平行四邊形的性質、中點的求法.在(1)中注意待定系數法的應用,在(2)中用m表示出E點的坐標是解題的關鍵.23、(1)5,20,80;(2)圖見解析;(3).【解析】【分析】(1)根據喜歡跳繩的人數以及所占的比例求得總人數,然后用總人數減去喜歡跳繩、乒乓球、其它的人數即可得;(2)用乒乓球的人數除以總人數即可得;(3)用800乘以喜歡籃球人數所占的比例即可得;(4)根據(1)中求得的喜歡籃球的人數即可補全條形圖;(5)畫樹狀圖可得所有可能的情況,根據樹狀圖求得2名同學恰好是1名女同學和1名男同學的結果,根據概率公式進行計算即可.【詳解】(1)調查的總人數為20÷40%=50(人),喜歡籃球項目的同學的人數=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論