四川省成都市龍泉驛區(qū)達標名校2025屆初三中考模擬卷(二)數(shù)學試題含解析_第1頁
四川省成都市龍泉驛區(qū)達標名校2025屆初三中考模擬卷(二)數(shù)學試題含解析_第2頁
四川省成都市龍泉驛區(qū)達標名校2025屆初三中考模擬卷(二)數(shù)學試題含解析_第3頁
四川省成都市龍泉驛區(qū)達標名校2025屆初三中考模擬卷(二)數(shù)學試題含解析_第4頁
四川省成都市龍泉驛區(qū)達標名校2025屆初三中考模擬卷(二)數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省成都市龍泉驛區(qū)達標名校2025屆初三中考模擬卷(二)數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,P、R分別是BC和DC上的點,E、F分別是AP和RP的中點,當點P在BC上從點B向點C移動,而點R不動時,下列結論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點P的位置有關2.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.3.在實數(shù),,,中,其中最小的實數(shù)是()A. B. C. D.4.對于下列調查:①對從某國進口的香蕉進行檢驗檢疫;②審查某教科書稿;③中央電視臺“雞年春晚”收視率.其中適合抽樣調查的是()A.①②B.①③C.②③D.①②③5.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.166.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關于x的方程ax2+bx+c﹣4=0的根的情況是A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根7.計算x﹣2y﹣(2x+y)的結果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y8.如圖,△ABC內(nèi)接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點,CD與AB的交點為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:29.如圖,在⊙O中,直徑CD⊥弦AB,則下列結論中正確的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D10.若分式有意義,則a的取值范圍為()A.a(chǎn)≠4 B.a(chǎn)>4 C.a(chǎn)<4 D.a(chǎn)=4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,則∠CDA=°.12.如圖,點A1,B1,C1,D1,E1,F(xiàn)1分別是正六邊形ABCDEF六條邊的中點,連接AB1,BC1,CD1,DE1,EF1,F(xiàn)A1后得到六邊形GHIJKL,則S六邊形GHIJKI:S六邊形ABCDEF的值為____.13.化簡:=_____.14.計算5個數(shù)據(jù)的方差時,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],則的值為_____.15.二次函數(shù)y=x2-2x+1的對稱軸方程是x=_______.16.使有意義的的取值范圍是__________.17.已知實數(shù)x,y滿足,則以x,y的值為兩邊長的等腰三角形的周長是______.三、解答題(共7小題,滿分69分)18.(10分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)19.(5分)(1)觀察猜想如圖①點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關系為______;(2)問題解決如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結BD,求BD的長;(3)拓展延伸如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.20.(8分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點E,F(xiàn)同時從B點出發(fā),沿射線BC向右勻速移動,已知點F的移動速度是點E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設E點移動距離為x(0<x<6).(1)∠DCB=度,當點G在四邊形ABCD的邊上時,x=;(2)在點E,F(xiàn)的移動過程中,點G始終在BD或BD的延長線上運動,求點G在線段BD的中點時x的值;(3)當2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關系式,當x取何值時,y有最大值?并求出y的最大值.21.(10分)計算:÷–+2018022.(10分)2018年大唐芙蓉園新春燈會以“鼓舞中華”為主題,既有新年韻味,又結合“一帶一路”展示了絲綢之路上古今文化經(jīng)貿(mào)繁榮的盛況。小麗的爸爸買了兩張門票,她和各個兩人都想去觀看,可是爸爸只能帶一人去,于是讀九年級的哥哥提議用他們3人吃飯的彩色筷子做游戲(筷子除顏色不同,其余均相同),其中小麗的筷子顏色是紅色,哥哥的是銀色,爸爸的是白色,將3人的3雙款子全部放在一個不透明的筷簍里搖勻,小麗隨機從筷簍里取出一根,記下顏色放回,然后哥哥同樣從筷簍里取出一根,若兩人取出的筷子顏色相同則小麗去,若不同,則哥哥去。(1)求小麗隨機取出一根筷子是紅色的概率;(2)請用列表或畫樹狀圖的方法求出小隨爸爸去看新春燈會的概率。23.(12分)目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對“你最認可的四大新生事物”進行調查,隨機調查了人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統(tǒng)計圖.根據(jù)圖中信息求出,;請你幫助他們將這兩個統(tǒng)計圖補全;根據(jù)抽樣調查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?24.(14分)(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1,h1.連接AM.∵∴(思考)在上述問題中,h1,h1與h的數(shù)量關系為:.(探究)如圖1,當點M在BC延長線上時,h1、h1、h之間有怎樣的數(shù)量關系式?并說明理由.(應用)如圖3,在平面直角坐標系中有兩條直線l1:,l1:y=-3x+3,若l1上的一點M到l1的距離是1,請運用上述結論求出點M的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:連接AR,根據(jù)勾股定理得出AR=的長不變,根據(jù)三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點:1、矩形性質,2、勾股定理,3、三角形的中位線2、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯(lián)系是解題的關鍵.3、B【解析】

由正數(shù)大于一切負數(shù),負數(shù)小于0,正數(shù)大于0,兩個負數(shù)絕對值大的反而小,把這四個數(shù)從小到大排列,即可求解.【詳解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的實數(shù)為-2;

故選:B.本題考查了實數(shù)的大小比較,關鍵是掌握:正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù)絕對值大的反而?。?、B【解析】

根據(jù)普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似解答.【詳解】①對從某國進口的香蕉進行檢驗檢疫適合抽樣調查;②審查某教科書稿適合全面調查;③中央電視臺“雞年春晚”收視率適合抽樣調查.故選B.本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.5、D【解析】

由AB的垂直平分MN交AC于D,根據(jù)線段垂直平分線的性質,即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.此題考查了線段垂直平分線的性質,比較簡單,注意數(shù)形結合思想與轉化思想的應用.6、A【解析】

根據(jù)拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【詳解】∵函數(shù)的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關系是解題的關鍵.7、C【解析】

原式去括號合并同類項即可得到結果.【詳解】原式,故選:C.本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.8、A【解析】

利用垂徑定理的推論得出DO⊥AB,AF=BF,進而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質求出即可.【詳解】連接DO,交AB于點F,∵D是的中點,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,F(xiàn)O=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.此題主要考查了垂徑定理的推論以及相似三角形的判定與性質,根據(jù)已知得出△DEF∽△CEA是解題關鍵.9、B【解析】

先利用垂徑定理得到弧AD=弧BD,然后根據(jù)圓周角定理得到∠C=∠BOD,從而可對各選項進行判斷.【詳解】解:∵直徑CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故選B.本題考查了垂徑定理和圓周角定理,垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。畧A周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.10、A【解析】

分式有意義時,分母a-4≠0【詳解】依題意得:a?4≠0,解得a≠4.故選:A此題考查分式有意義的條件,難度不大二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點:切線的性質.12、.【解析】

設正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a.求出正六邊形的邊長,根據(jù)S六邊形GHIJKI:S六邊形ABCDEF=()2,計算即可;【詳解】設正六邊形ABCDEF的邊長為4a,則AA1=AF1=FF1=2a,作A1M⊥FA交FA的延長線于M,在Rt△AMA1中,∵∠MAA1=60°,∴∠MA1A=30°,∴AM=AA1=a,∴MA1=AA1·cos30°=a,F(xiàn)M=5a,在Rt△A1FM中,F(xiàn)A1=,∵∠F1FL=∠AFA1,∠F1LF=∠A1AF=120°,∴△F1FL∽△A1FA,∴,∴,∴FL=a,F(xiàn)1L=a,根據(jù)對稱性可知:GA1=F1L=a,∴GL=2a﹣a=a,∴S六邊形GHIJKI:S六邊形ABCDEF=()2=,故答案為:.本題考查正六邊形與圓,解直角三角形,勾股定理,相似三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數(shù)解決問題.13、【解析】

直接利用二次根式的性質化簡求出答案.【詳解】,故答案為.本題考查了二次根式的性質與化簡,正確掌握二次根式的性質是解題的關鍵.14、1【解析】

根據(jù)平均數(shù)的定義計算即可.【詳解】解:故答案為1.本題主要考查平均數(shù)的求法,掌握平均數(shù)的公式是解題的關鍵.15、1【解析】

利用公式法可求二次函數(shù)y=x2-2x+1的對稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為:1本題考查二次函數(shù)基本性質中的對稱軸公式;也可用配方法解決.16、【解析】

根據(jù)二次根式的被開方數(shù)為非負數(shù)求解即可.【詳解】由題意可得:,解得:.所以答案為.本題主要考查了二次根式的性質,熟練掌握相關概念是解題關鍵.17、1或2【解析】

先根據(jù)非負數(shù)的性質列式求出x、y的值,再分x的值是腰長與底邊兩種情況討論求解.【詳解】根據(jù)題意得,x-5=0,y-7=0,解得x=5,y=7,①5是腰長時,三角形的三邊分別為5、5、7,三角形的周長為1.②5是底邊時,三角形的三邊分別為5、7、7,能組成三角形,5+7+7=2;所以,三角形的周長為:1或2;故答案為1或2.本題考查了等腰三角形的性質,絕對值與算術平方根的非負性,根據(jù)幾個非負數(shù)的和等于0,則每一個算式都等于0求出x、y的值是解題的關鍵,難點在于要分情況討論并且利用三角形的三邊關系進行判斷.三、解答題(共7小題,滿分69分)18、1米.【解析】試題分析:作BE⊥DH,知GH=BE、BG=EH=10,設AH=x,則BE=GH=43+x,由CH=AHtan∠CAH=tan55°?x知CE=CH﹣EH=tan55°?x﹣10,根據(jù)BE=DE可得關于x的方程,解之可得.試題解析:解:如圖,作BE⊥DH于點E,則GH=BE、BG=EH=10,設AH=x,則BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°?x﹣10+35,解得:x≈45,∴CH=tan55°?x=1.4×45=1.答:塔桿CH的高為1米.點睛:本題考查了解直角三角形的應用,解答本題要求學生能借助仰角構造直角三角形并解直角三角形.19、(1)BC=BD+CE,(2);(3).【解析】

(1)證明△ADB≌△EAC,根據(jù)全等三角形的性質得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數(shù)量關系;(2)過D作DE⊥AB,交BA的延長線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根據(jù)勾股定理即可得到BD的長;(3)過D作DE⊥BC于E,作DF⊥AB于F,證明△CED≌△AFD,根據(jù)全等三角形的性質得到CE=AF,ED=DF,設AF=x,DF=y,根據(jù)CB=4,AB=2,列出方程組,求出的值,根據(jù)勾股定理即可求出BD的長.【詳解】解:(1)觀察猜想結論:BC=BD+CE,理由是:如圖①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)問題解決如圖②,過D作DE⊥AB,交BA的延長線于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓展延伸如圖③,過D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,設AF=x,DF=y,則,解得:∴BF=2+1=3,DF=3,由勾股定理得:考查全等三角形的判定與性質,勾股定理,二元一次方程組的應用,熟練掌握全等三角形的判定與性質是解題的關鍵.20、(1)30;2;(2)x=1;(3)當x=時,y最大=;【解析】

(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當?shù)冗吶切巍鱁GF的高=時,點G在AD上,此時x=2;(2)根據(jù)勾股定理求出的長度,根據(jù)三角函數(shù),求出∠ADB=30°,根據(jù)中點的定義得出根據(jù)等邊三角形的性質得到,即可求出x的值;

(3)圖2,圖3三種情形解決問題.①當2<x<3時,如圖2中,點E、F在線段BC上,△EFG與四邊形ABCD重疊部分為四邊形EFNM;②當3≤x<6時,如圖3中,點E在線段BC上,點F在射線BC上,重疊部分是△ECP;【詳解】(1)作DH⊥BC于H,則四邊形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∴當?shù)冗吶切巍鱁GF的高等于時,點G在AD上,此時x=2,∠DCB=30°,故答案為30,2,(2)如圖∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中,∴∠ADB=30°∵G是BD的中點∴∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等邊三角形,∴∠GFE=60°∴∠BGF=90°在Rt△BGF中,∴2x=2即x=1;(3)分兩種情況:當2<x<3,如圖2點E、點F在線段BC上△GEF與四邊形ABCD重疊部分為四邊形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,∴∴當時,最大當3≤x<6時,如圖3,點E在線段BC上,點F在線段BC的延長線上,△GEF與四邊形ABCD重疊部分為△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,對稱軸為當x<6時,y隨x的增大而減小∴當x=3時,最大綜上所述:當時,最大屬于四邊形的綜合題,考查動點問題,等邊三角形的性質,三角函數(shù),二次函數(shù)的最值等,綜合性比較強,難度較大.21、2【解析】

根據(jù)實數(shù)的混合運算法則進行計算.【詳解】解:原式=-(-1)+1=-+1+1=2此題重點考察學生對實數(shù)的混合運算的應用,熟練掌握計算方法是解題的關鍵.22、(1);(2).【解析】

(1)直接利用概率公式計算;(2)畫樹狀圖展示所有36種等可能的結果數(shù),再找出兩人取出的筷子顏色相同的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)小麗隨機取出一根筷子是紅色的概率==;(2)畫樹狀圖為:共有36種等可能的結果數(shù),其中兩人取出的筷子顏色相同的結果數(shù)為12,所以小麗隨爸爸去看新春燈會的概率==.本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論