天津市和平區(qū)五十五中2025屆初三下第四次模擬考試數(shù)學試題含解析_第1頁
天津市和平區(qū)五十五中2025屆初三下第四次模擬考試數(shù)學試題含解析_第2頁
天津市和平區(qū)五十五中2025屆初三下第四次模擬考試數(shù)學試題含解析_第3頁
天津市和平區(qū)五十五中2025屆初三下第四次模擬考試數(shù)學試題含解析_第4頁
天津市和平區(qū)五十五中2025屆初三下第四次模擬考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

天津市和平區(qū)五十五中2025屆初三下第四次模擬考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S1.若S2=48,S1=9,則S1的值為()A.18 B.12 C.9 D.12.如圖,將矩形ABCD沿對角線BD折疊,使C落在C'處,BC'交AD于E,則下列結(jié)論不一定成立的是()A.AD=BC' B.∠EBD=∠EDBC.ΔABE~ΔCBD D.sin3.下列計算正確的是()A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1C.2x2÷3x2=x2 D.2x2?3x2=6x44.若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則一次函數(shù)的圖象可能是:A. B. C. D.5.已知如圖,△ABC為直角三角形,∠C=90°,若沿圖中虛線剪去∠C,則∠1+∠2等于()A.315° B.270° C.180° D.135°6.下列計算正確的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2?x3=x6 D.(-x)2-x2=07.我國古代數(shù)學名著《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有x匹,小馬有y匹,那么可列方程組為()A. B. C. D.8.二次函數(shù)(a、b、c是常數(shù),且a≠0)的圖象如圖所示,下列結(jié)論錯誤的是()A.4ac<b2 B.a(chǎn)bc<0 C.b+c>3a D.a(chǎn)<b9.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.50° C.60° D.30°10.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的主視圖是()A. B. C. D.11.我國作家莫言獲得諾貝爾文學獎之后,他的代表作品《蛙》的銷售量就比獲獎之前增長了180倍,達到2100000冊.把2100000用科學記數(shù)法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×10612.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:3a3﹣3a=_____.14.在平面直角坐標系中,點A1,A2,A3和B1,B2,B3分別在直線y=和x軸上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.則A3的坐標為_______.

.15.如圖,將一塊含有30°角的直角三角板的兩個頂點疊放在長方形的兩條對邊上,如果∠1=27°,那么∠2=______°16.受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展.預計達州市2018年快遞業(yè)務量將達到5.5億件,數(shù)據(jù)5.5億用科學記數(shù)法表示為_____.17.a(chǎn)(a+b)﹣b(a+b)=_____.18.如圖,點A、B、C在圓O上,弦AC與半徑OB互相平分,那么∠AOC度數(shù)為_____度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結(jié)論).20.(6分)對于方程x2解:方程兩邊同乘6,得3x﹣2(x﹣1)=1①去括號,得3x﹣2x﹣2=1②合并同類項,得x﹣2=1③解得x=3④∴原方程的解為x=3⑤上述解答過程中的錯誤步驟有(填序號);請寫出正確的解答過程.21.(6分)某市教育局為了了解初一學生第一學期參加社會實踐活動的情況,隨機抽查了本市部分初一學生第一學期參加社會實踐活動的天數(shù),并將得到的數(shù)據(jù)繪制成了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:扇形統(tǒng)計圖中a的值為%,該扇形圓心角的度數(shù)為;補全條形統(tǒng)計圖;如果該市共有初一學生20000人,請你估計“活動時間不少于5天”的大約有多少人?22.(8分)投資1萬元圍一個矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造.墻長24m,平行于墻的邊的費用為200元/m,垂直于墻的邊的費用為150元/m,設平行于墻的邊長為xm設垂直于墻的一邊長為ym,直接寫出y與x之間的函數(shù)關(guān)系式;若菜園面積為384m2,求x的值;求菜園的最大面積.23.(8分)(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調(diào)查小組設計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調(diào)查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計圖:根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:(1)本次抽樣調(diào)查中的樣本容量是;(2)補全條形統(tǒng)計圖;(3)該校共有2000名學生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為“打球”的學生人數(shù).24.(10分)甲、乙、丙、丁四位同學進行乒乓球單打比賽,要從中選出兩位同學打第一場比賽.若確定甲打第一場,再從其余三位同學中隨機選取一位,恰好選中乙同學的概率是.若隨機抽取兩位同學,請用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.25.(10分)如圖,在平行四邊形ABCD中,DB⊥AB,點E是BC邊的中點,過點E作EF⊥CD,垂足為F,交AB的延長線于點G.(1)求證:四邊形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.26.(12分)某校七年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題中選擇一個,七年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.(1)將上面的條形統(tǒng)計圖補充完整;(2)在扇形統(tǒng)計圖中,選擇“愛國”主題所對應的圓心角是多少度?(3)如果該校七年級共有1200名考生,請估計選擇以“友善”為主題的七年級學生有多少名?27.(12分)先化簡:,再請你選擇一個合適的數(shù)作為x的值代入求值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

過A作AH∥CD交BC于H,根據(jù)題意得到∠BAE=90°,根據(jù)勾股定理計算即可.【詳解】∵S2=48,∴BC=4,過A作AH∥CD交BC于H,則∠AHB=∠DCB.∵AD∥BC,∴四邊形AHCD是平行四邊形,∴CH=BH=AD=2,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故選D.本題考查了勾股定理,正方形的性質(zhì),平行四邊形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.2、C【解析】分析:主要根據(jù)折疊前后角和邊相等對各選項進行判斷,即可選出正確答案.詳解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正確.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正確.D、∵sin∠ABE=AEBE∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=AEED由已知不能得到△ABE∽△CBD.故選C.點睛:本題可以采用排除法,證明A,B,D都正確,所以不正確的就是C,排除法也是數(shù)學中一種常用的解題方法.3、D【解析】

先利用合并同類項法則,單項式除以單項式,以及單項式乘以單項式法則計算即可得到結(jié)果.【詳解】A、2x2+3x2=5x2,不符合題意;B、2x2﹣3x2=﹣x2,不符合題意;C、2x2÷3x2=,不符合題意;D、2x23x2=6x4,符合題意,故選:D.本題主要考查了合并同類項法則,單項式除以單項式,單項式乘以單項式法則,正確掌握運算法則是解題關(guān)鍵.4、B【解析】

由方程有兩個不相等的實數(shù)根,可得,解得,即異號,當時,一次函數(shù)的圖象過一三四象限,當時,一次函數(shù)的圖象過一二四象限,故答案選B.5、B【解析】

利用三角形內(nèi)角與外角的關(guān)系:三角形的任一外角等于和它不相鄰的兩個內(nèi)角之和解答.【詳解】如圖,∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°-∠C=90°,∴∠1+∠2=2×90°+90°=270°.故選B.此題主要考查了三角形內(nèi)角與外角的關(guān)系:三角形的任一外角等于和它不相鄰的兩個內(nèi)角之和.6、D【解析】試題解析:A原式=2x2,故A不正確;B原式=x6,故B不正確;C原式=x5,故C不正確;D原式=x2-x2=0,故D正確;故選D考點:1.同底數(shù)冪的除法;2.合并同類項;3.同底數(shù)冪的乘法;4.冪的乘方與積的乘方.7、C【解析】

設大馬有x匹,小馬有y匹,根據(jù)題意可得等量關(guān)系:①大馬數(shù)+小馬數(shù)=100;②大馬拉瓦數(shù)+小馬拉瓦數(shù)=100,根據(jù)等量關(guān)系列出方程組即可.【詳解】解:設大馬有x匹,小馬有y匹,由題意得:,故選C.此題主要考查了由實際問題抽象出二元一次方程組,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程組.8、D【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)逐一判斷即可求出答案.【詳解】由圖象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故A正確;∵拋物線開口向上,∴a<0,∵拋物線與y軸的負半軸,∴c<0,∵拋物線對稱軸為x=<0,∴b<0,∴abc<0,故B正確;∵當x=1時,y=a+b+c>0,∵4a<0,∴a+b+c>4a,∴b+c>3a,故C正確;∵當x=﹣1時,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D錯誤;故選D.考點:本題主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程、不等式之間的轉(zhuǎn)換,根的判別式的熟練運用.9、A【解析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.10、A【解析】試題分析:觀察圖形可知,該幾何體的主視圖是.故選A.考點:簡單組合體的三視圖.11、D【解析】2100000=2.1×106.點睛:對于一個絕對值較大的數(shù),用科學記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).12、B【解析】

首先證明△ABF≌△DEA得到BF=AE;設AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3a(a+1)(a﹣1).【解析】

首先提取公因式3a,進而利用平方差公式分解因式得出答案.【詳解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案為3a(a+1)(a﹣1).此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關(guān)鍵.14、A3()【解析】

設直線y=與x軸的交點為G,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,由條件可求得,再根據(jù)等腰三角形可分別求得A1D、A2E、A3F,可得到A1,A2,A3的坐標.【詳解】設直線y=與x軸的交點為G,

令y=0可解得x=-4,

∴G點坐標為(-4,0),

∴OG=4,

如圖1,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,

∵△A1B1O為等腰直角三角形,

∴A1D=OD,

又∵點A1在直線y=x+上,

∴=,即=,解得A1D=1=()0,

∴A1(1,1),OB1=2,

同理可得=,即=,解得A2E==()1,則OE=OB1+B1E=,

∴A2(,),OB2=5,

同理可求得A3F==()2,則OF=5+=,

∴A3(,);故答案為(,)本題主要考查等腰三角形的性質(zhì)和直線上點的坐標特點,根據(jù)題意找到點的坐標的變化規(guī)律是解題的關(guān)鍵,注意觀察數(shù)據(jù)的變化.15、57°.【解析】

根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】由平行線性質(zhì)及外角定理,可得∠2=∠1+30°=27°+30°=57°.本題考查平行線的性質(zhì)及三角形外角的性質(zhì).16、5.5×1.【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:5.5億=550000000=5.5×1,故答案為5.5×1.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.17、(a+b)(a﹣b).【解析】

先確定公因式為(a+b),然后提取公因式后整理即可.【詳解】a(a+b)﹣b(a+b)=(a+b)(a﹣b).本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.18、1.【解析】

首先根據(jù)垂徑定理得到OA=AB,結(jié)合等邊三角形的性質(zhì)即可求出∠AOC的度數(shù).【詳解】解:∵弦AC與半徑OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等邊三角形,∴∠AOB=60°,∴∠AOC=1°,故答案為1.本題主要考查了垂徑定理的知識,解題的關(guān)鍵是證明△OAB是等邊三角形,此題難度不大.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②設AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點F是AB的中點.(2)△EFC是等腰直角三角形.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設AM=x,則DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM(ASA),∴AM=FM.設AM=x,則AF=2x,DN=x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考點:四邊形綜合題.20、(1)錯誤步驟在第①②步.(2)x=4.【解析】

(1)第①步在去分母的時候,兩邊同乘以6,但是方程右邊沒有乘,另外在去括號時沒有注意到符號的變化,所以出現(xiàn)錯誤;(2)注重改正錯誤,按以上步驟進行即可.【詳解】解:(1)方程兩邊同乘6,得3x﹣2(x﹣1)=6①去括號,得3x﹣2x+2=6②∴錯誤步驟在第①②步.(2)方程兩邊同乘6,得3x﹣2(x﹣1)=6去括號,得3x﹣2x+2=6合并同類項,得x+2=6解得x=4∴原方程的解為x=4本題考查的解一元一次方程,注意去分母與去括號中常見錯誤,符號也經(jīng)常是出現(xiàn)錯誤的原因.21、(1)25,90°;(2)見解析;(3)該市“活動時間不少于5天”的大約有1.【解析】試題分析:(1)根據(jù)扇形統(tǒng)計圖的特征即可求得的值,再乘以360°即得扇形的圓心角;(2)先算出總?cè)藬?shù),再乘以“活動時間為6天”對應的百分比即得對應的人數(shù);(3)先求得“活動時間不少于5天”的學生人數(shù)的百分比,再乘以20000即可.(1)由圖可得該扇形圓心角的度數(shù)為90°;(2)“活動時間為6天”的人數(shù),如圖所示:(3)∵“活動時間不少于5天”的學生人數(shù)占75%,20000×75%=1∴該市“活動時間不少于5天”的大約有1人.考點:統(tǒng)計的應用點評:統(tǒng)計的應用初中數(shù)學的重點,在中考中極為常見,一般難度不大.22、(1)見詳解;(2)x=18;(3)416m2.【解析】

(1)根據(jù)“垂直于墻的長度=可得函數(shù)解析式;(2)根據(jù)矩形的面積公式列方程求解可得;(3)根據(jù)矩形的面積公式列出總面積關(guān)于x的函數(shù)解析式,配方成頂點式后利用二次函數(shù)的性質(zhì)求解可得.【詳解】(1)根據(jù)題意知,y==-x+;(2)根據(jù)題意,得(-x+)x=384,解得x=18或x=32.∵墻的長度為24m,∴x=18.(3)設菜園的面積是S,則S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴當x<25時,S隨x的增大而增大.∵x≤24,∴當x=24時,S取得最大值,最大值為416.答:菜園的最大面積為416m2.本題主要考查二次函數(shù)和一元二次方程的應用,解題的關(guān)鍵是將實際問題轉(zhuǎn)化為一元二次方程和二次函數(shù)的問題.23、(1)100;(2)作圖見解析;(3)1.【解析】試題分析:(1)根據(jù)百分比=計算即可;(2)求出“打球”和“其他”的人數(shù),畫出條形圖即可;(3)用樣本估計總體的思想解決問題即可.試題解析:(1)本次抽樣調(diào)查中的樣本容量=30÷30%=100,故答案為100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,條形圖如圖所示:(3)估計該校課余興趣愛好為“打球”的學生人數(shù)為2000×40%=1人.24、(1)13;(2)【解析】

1)由題意可得共有乙、丙、丁三位同學,恰好選中乙同學的只有一種情況,則可利用概率公式求解即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,確定甲打第一場,再從其余的三位同學中隨機選取一位,∴恰好選到丙的概率是:13(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,恰好選中甲、乙兩人的有2種情況,∴恰好選中甲、乙兩人的概率為:2此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論