版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
初中數(shù)學(xué)輔助線(Juniorhighschoolmathematicsauxiliaryline)
Juniorhighschoolmathematicsauxiliaryline
1.triangleproblemaddingauxiliarylinemethod
Method1:questionsaboutthemiddlelineofatriangle,often
doublingthemiddle1ine.Itiseasytosolvetheproblemwith
themidpointoftheproblem,oftenusingthemiddlelineofthe
triangle.
Method2:thesubjectthatcontainsthebisector,oftentakes
theangularbisectorasthesymmetryaxis,andusestheproperty
ofthebisectorandtheconditioninthequestiontoconstruct
thecongruenttriangle,thussolvestheproblembyusingthe
knowledgeofcongruenttriangle.
Method3:theconclusionisthatthetwolinesegmentsareequal,
theauxiliarylinesareoftendrawnintocongruenttriangles,
orsometheoremsaboutthebisectionlineareused.
Method4:conclusionisalinewithanotherlineandthethird
lineisequaltothiskindofproblems,oftenwithlongorshort
cutmethod,theso-calledtenniniallymethodistoputthethird
linesaredividedintotwoparts,onepartofthecardisequal
tothefirst1ine,andtheotherpartisequaltosecondlines.
Theaddingmethodofauxiliarylinein2.parallelogram
Theparallelogram(includingrectangular,square,diamond)two
groupofdiagonalanddiagonaledges,hassomeofthesame
nature,sotherearealsocommoninaddingauxiliarylinemethod,
theobjectiveistocreatelineparallel,vertical,similar,
congruenttriangles,theparallelogramproblemintoatriangle,
squareandotherissuesofcommonprocessing,hasthefollowing
severalcommonmethods,forexamplesimplesolutionsas
follows:
(1)diagonalortranslationdiagonal:
(2)theverticalstructureoftheedgeoppositethevertex;the
righttriangle
(3)parallellinesconnectingthediagonalintersectionpoint
withthemidpointofonesideorthediagonalintersectionpoint
areconstructed,andtheparallelormiddlelineoftheline
segmentisconstructed
(4)alinesegmentconnectingthevertextoapointonthe
oppositeedgeorextendingtheline,constructingatriangle,
asimilaroranequaltriangle.
(5)makeadiagonallineperpendiculartothevertexandform
alineparallelortrianglecongruent
3.laddercommonlyusedintheauxiliarylineoftim
Atrapeziumisaspecialquadrilateral.Itisasynthesisof
parallelogramandtriangleknowledge.Byaddingproper
auxiliary1ines,thetrapezoidalproblemisreducedtoa
parallelogramoratriangleproblem.Theauxiliarylineis
addedasabridgetosolvetheproblem:
(1)moveonewaistinthetrapezoid.
(2)trapezoidoutsidetranslationonewaist
(3)insidetheladder,movetwowaist
(4)extendtwowaist
(5)theendsofthetopandbottomoftheladderarehigh
(6)translationdiagonal
(7)connecttheacmeofaladderandthemidpointofawaist.
(8)themidpointofonewaististheparallellineoftheother
waist.
(9)makemiddlepositionline;
Ofcourse,intherelevantdemonstrationandcalculationofthe
ladder,theauxiliarylinesaddedarenotnecessarilyfixedand
single.Itisthekeytosolvetheproblemofturningthe
trapeziumproblemintoparallelogramortrianglethroughthe
auxiliarylineofthebridge.
Amethodofmakingauxiliarylines
I.midpoint,middleline,extension1ine,parallelline.
Apointincaseofconditionsinline,themedian1ine,then
amidpoint,extendthemidlineormedianlineastheauxiliary
line,theextensionofasegmentisequaltothemedianline
orline;anotherauxiliarylineisthemidpointforparallel
linesorlinesegmentsknownside,inordertoachievethe
applicationofatheoremthepurposeofmakingorhelp.
Two:vertical,bisector,flip,congruent,even.
Incaseswherethereisabisectoroftheverticalortheangle,
thegraphcanberotatedby180degreesbythemethodofaxial
symmetryandbyotherconditions,andthecontourofthe
auxiliarylinewillcomeintobeing.Thesymmetryaxisisoften
thebisectoroftheverticalortheangle.
Three:experimentiftheedgesareequalandrotated.
Apolygononbothsidesofthecornersincaseofequalorequal
conditionsinthecorner,sometimeswitheachother,thenthe
angleofgraphrotationtosomeextent,youcangetcongruent,
thenauxiliarylinepracticesstillcomeintobeing.Thecenter
ofsymmetryvariesfromsubjecttocenter,sometimeswithout
center.Itcanbedividedinto"heart"and"nomind“rotation
ofthetwo.
Four:maketheangle,theflat,thesimilar,thedifference,
thedifference,theproductandthecommercialview.
Apolygononbothsidesofthecornersincaseofequalorequal
conditions,tosegmentorangleanddifferenceproductisoften
associatedwithsimilarbusiness.Inmakingtwotrianglesalike,
therearegenerallytwoways:first,tocreateanauxiliary
angleequaltotheknownangle;second,tomovealineinthe
triangle.Averse:"angle,flat,similaranddifferenceproduct
dealerssee.”
Five:areatofindthebottomhigh,multilateralchangethree
sides.
Inthecaseofthearea,thesquareandtheproductoftheline
segmentintheconditionandtheconclusioncanstillbe
regardedastheareaofthesolution,andoftenthebottomor
theheightistheauxiliaryline,whiletheequalbottomor
equalheightofthetwotriangleisthekeytothethinking.
Ifapolygonisencountered,theideaiscutupintoatriangle;
otherwise,itisestablished.
Inaddition,MingandQingDynastiesinChinaareafor
mathematicianstoprovethePythagoreantheorem,theauxiliary
lineapproach,namely"patching“hasmorethan200kinds,most
oftheareaattheendofthree,themultilateralboundary”.
Juniorhighschoolgeometrycommonauxiliarylineformula
Peoplesaygeometryisverydifficult,andthedifficultyis
intheauxiliaryline.Auxiliaryline,howtoadd?Grasp
theoremsandconcepts.
Wemuststudyhard,findoutthelaw,andrelyonexperience.
Triangle
Thegraphhasanangularbisectorthatcanbeperpendicularto
bothsides.Youcanalsolookatthefigureinhalf,symmetrical,
thentherelationshipis.
Anglebisector,parallelline,isoscelestriangletoadd.Angle
bisector,plusverticalline,trythreelinestogether.
A1ineofverticalbisector,oftenjoinedtobothends.Line
segmentsanddifferences,andhalftimes,extended,shortened,
andtestable.
Thelinesegmentsanddifferenceinequalitiesmovetothesame
triangle.Themiddleofthetriangleistwopoints,andthe
connectionisamiddleline.
Thereisamiddlelineinthetriangle,extendingthemiddle
lineandsoon.
Quadrilateral
Theparallelogramappearsandthecenterofsymmetrydivides.
Theproblemhowtoconvertladder,anddelta.
Movethewaist,movediagonally,andlengthenthetwowaistto
makeithigh.Ifthereisamiddlepointofthewaist,carefully
connectthemiddleline.
Theabovemethoddoesnotwork,overwaistmidpointcongruent
creation.Similartotheline,lineparalleltothehabit.
Theplotratioformulaisthekeysegmentforchange.Direct
proofofdifficulty,equalsubstitution,lesstrouble.
Thehypotenuseaboveline,alargeproportionofitems.
Examplesofcommonlyusedmethodsforassistinglinesin
triangles
Onetimesthecenterline
1:ABCADBCisknown,onthesideofthemidline,asanisosceles
righttrianglewithABedge,ACedgeisrectangularshape
anisotropy,asshowninFigure5-2,confirmationofEF=2AD.
Two,takefromauxiliary1inemethod.
InABC,AD/BAC/ACBsplit,/B=2,AB=ACCDconfirmation.
Three,extendtheknownsidestructuretriangle:
Forexample:Figure7-1:givenAC=BD,ADACinAgroup,BC
groupofBDinB:AD=BC,confirmation
Analysis:toAD=BC,ofwhichcontainAD,BCthereareseveral
congruenttriangles,DeltaADCanddeltaplan:BCD,DeltaAOD
anddeltaBOC,DeltaABDanddeltaBAC,butaccordingtothe
existingconditionsarenotequaltothedifferenceofangle
congruentcard,therefore,cantrytomakeanewangle.Letthe
angleastwotriangularpublicangle.
Proof:extendedDA,CB,respectively,andtheirelongationat
Epoint,
ADACBCgroupBDgroupofdreams(known)
L/CAE/DBE==90DEG(verticaldefinition)
InthedeltaDBEanddeltaCAE
Dreams
StardeltaDBE=CAE(AAS)
ED=EB=EA*EC(congruenttrianglescorrespondingequal
sides)
L=EDEAECEB
Namely:AD=BC.
Whenconditionsareinsufficient,newconditionscanbecreated
byaddingauxiliarylinestocreateconditionsforthequestion
Four,connectthequadrilateraldiagonal,thequadrilateral
problemintoatriangletosolve.
Forexample:asshowninfigure8-1:AB,CD,ADandBCprovethat
AB=CD.
Analysis:thegraphisquadrilateral,weonlylearnthe
knowledgeabouttriangle,andmusttransformitintotriangle
tosolve.
Proof:connectAC(orBD)
ABCDADBC"Dreams”(known)
L/l=2/3=4,//(twolineparallel,alternateanglesequal)
InthedeltaABCanddeltaCDA
Dreams
StardeltaABC=CDA(ASA)
ABCD(r=congruenttrianglescorrespondingequalsides)
Five.Thelineisusuallyextendedwhenthereisalinesegment
perpendiculartotheanglebisector.
Forexample:asshowninFigure9-1:inRtDeltaABC,AB=AC
/BAC=90/1=2DEGangle,theextensionofBDinECEgroup.
Confirmation:BD=2CE
Analysis:toBD=2CE,thoughttoconstructthesegments2CE,
CEandABCanglebisectorandvertical,thoughttoextendthe.
Proof:extendedBAandCEtopointF,respectively.
BECF(known)groupofdreams
L/BEF/BEC==90DEG(verticaldefinition)
InthedeltaBEFanddeltaBEC,
Dreams
StardeltaBEF=BEC(ASA)*CE=FE=CF(congruenttriangles
correspondingequalsides)
AnCF/BAC=90?BEdreams(known)
L/BAC/CAF==90deg/1+/BDA=90deg/1+/BFC=90
DEG
L/BDA=/BFC
InthedeltaABDanddeltaACF
StardeltaABD=ACF(AAS)*BD=CF(congruenttriangles
correspondingequalsides)*BD=2CE
Six.Connecttheknownpointsandconstructcongruent
triangles.
Forexample:known:figure10-1;ACandBDintersectat0,and
AB=DC,AC=BD/A/D=confirmation.
Analysis:Card/A=/D,permittheirtriangleDeltaABOand
deltaDCOcongruent,andonlyAB=DCandtheverticalangle
ofthetwoconditions,acondition,topermitthecongruent,
onlytofindanotherothercongruenttriangles,AB=DC,AC=
BD,ifconnectBC,DeltaABCandDeltaDCBiscongruent,soget
/A=/D.
Proof:connectBC,DeltaABCanddeltaDCBin
Dreams
StardeltaABC=DCB(SSS)
L/A/D=(congruenttrianglescorrespondingequalsides)
Seven,takelinesegments,midpointstructure,congruent,
threetangible.
Forexample:figure11-1:AB=DC/A=/D/ABC/DCB=
confirmation.
Analysis:AB=DC/A=D/AD,thoughtofasthemidpointof
N,NC,NBconnection,thentheSASaxiomsofdeltaABNDelta
DCN=,soBN=CN,ABN=//DCN.Theonlycard/NBC=M/NCB,
andBCMN,themidpointconnection,theSSSaxiomsofdeltaNBM
=NCM/NBC=NCB/so.Proofofproblem.
Proof:takethemidpointofAD,BC,N,M,connectNB,NM,NC.
ThenAN=DN,BM=CM,
InthedeltaABNanddeltaDCN
Dreams
StardeltaABN=DCN(SAS)
L/ABN=NB/DCN=NC(congruenttrianglescorrespondingedges,
equalangles)
InthedeltaNBManddeltaNCM
Dreams
StardeltaNMB=NCM,r=(SSS)/NBC/NCB(congruenttriangles
correspondingequalangles)/NBC/ABN/r=NCB/DCN/ABC
/DCB=namely.
Twotheauxiliarylinethatisinducedbythebisectorofangles
Formula:abisectorgraph,tomakebothsidesofthevertical.
Youcanalsolookatthefigureinhalf,symmetrical,thenthe
relationshipis.Anglebisector,parallel1ine,isosceles
triangletoadd.Anglebisector,plusverticalline,trythree
linestogether.
Theangularbisectorhastwoproperties:Aandsymmetry;Band
thebisectorofthebisectoroftheangularbisectorareequal
tothedistanceofthetwosidesofthecorner.Thereare
generallytwokindsofauxiliarylineswithangularbisector.
Averticallinefromonepointtotheotherfromthebisector;
Theuseofangularbisectortoconstructsymmetricalfigures
(e.g.,cuttingshortedgesonthelongsideofaside).
Normally,whenarightorverticalconditionoccurs,avertical
lineisusuallyconsidered;inothercases,asymmetric
structureisconsidered.Asforwhichmethodtochoose,combine
thetitle,graphandknownconditions.
Anauxiliarylinewithanangle
(I)interception,construction,congruence
Theproofofgeometryliesinthesuppositionandtheattempt,
butthiskindofattemptandthesuppositionareincertainlaw
basicabove,hopedschoolmatescangraspthecorrelation
geometrylaw,
Insolvinggeometryproblems,trytoguessandtryaccording
tocertainrules.Thefollowingisabriefintroductiontothe
auxiliarylinesinvolvedinthetheoremscommontogeometry.
Figure1-1/AOC=/BOC,suchas0E=0F,DE,DFandconnectwith
deltaOED,DeltatownofOFD,thuscreatingconditionsforour
proofline,angle.
Figure1-2,AB//CD,BE/BCD/CEsplit,splitBCD,EinAD,
toverify:BC=AB+CD.
Analysis:thisproblemisrelatedtotheanglebisectorofangle
bisector,canbeusedtoconstructthesolutionofcongruent
triangles,dividethelinetoconstructtheaxisofsymmetry,
andtheproblemisthatlineandthebadtimesproblem.The
methodintheproofoflinesegmentandthebadtimestothe
commonproblemistoextendthemethodorinterceptmethodto
prove,extendtheshortlineorinalonglinetointercepta
portionofthelengthisequaltotheshortline.Butwhether
orextendedtoprovetheequallineintercept,extendedtoprove
thattheextensionofthelineandalinesegmenttoproveequal
interceptioninterceptionaftertherestofthelinewithan
equal,andachievethepurposeoftheproof.
Simpleproof:inthisquestion,wecaninterceptBF=ABonlong
segmentBC,andthenproveCF=CD,soastoachievethepurpose
ofproof.Thisusesangularbisectortoconstructcongruent
triangles.Anothercongruentselfproof.Theproofofthis
problemcanalsobeextendedtotheextensionlineofBEand
CDtoproveitatonepoint.Tryityourself.
(two)theverticallineonbothsidesoftheanglelineisequal
totheverticalline
Theangleofthebisectorisperpendiculartobothsidesofthe
bisector,andtheproblemisprovedbythedistancebetweenthe
pointsonthebisectorofthebisectorandthedistancebetween
thetwosides.
Figure2-1,knownasAB>AD,CD=BC/BAC=/FAC.
Proof:/ADC+/B=180?
Analysis:fromC/BADtobothsidesofthevertical.InC/
ADCandangleBandangle.
(three)theverticalstructureofangularbisector;isosceles
triangle
Theverticalangularbisectorfromacornerontheside,sothat
bothsidesandcorneroftheintersection,thencutanisosceles
triangle,pedalforthemidpointonthebottom,theangle
bisectorandbeonthebottomlineandhigh,onetothreelines
bynatureandnatureinisoscelestrianglethebitline,(if
thereisalinesegmentperpendiculartotheangularbisector
inthesubject,thelineisextendedtointersecttheotherside
ofthecorner).
Knownas:3-1,AB>AC/BAD=/DAC,CD,ADinDgroup,Histhe
midpointofBC.
Confirmation:DH=(AB-AC)
Analysis:theextensionofCDandtheintersectionofABat
pointEarecongruenttriangles.Problemprovable.
(four)parallellinesontheothersideofthecornermadefrom
apointontheangleline
Inthecaseofanangularbisector,theparallellineofone
sideofthebisectoronthebisectorofthebisectoris
constructedtoformanisoscelestriangle.Theparallel1ines
oftheangularbisectorareintersectedwiththereverse
extensionlineontheotherside,soanisoscelestriangleis
alsoformed.Asshowninfigures4-1and4-2.
Threebythelineandthedifferencetothinkoftheauxiliary
line
Formula:
Linesegmentsanddifferences,andhalftimes,extended,
shortened,andtestable.Thelinesegmentsanddifference
inequalitiesmovetothesametriangle.
Whenprovingalineequaltotheothertwolinesandwhenthe
generalmethodisonlythenmethod:
1.Length:acutinalonglineisequaltooneoftheother
two,andthenprovesthattheremainderisequaltotheother;
2,improve:ashort1ineextension,theextensionpartisequal
toanothershortsegment,andthenprovethatthenewlineis
equaltothelengthofline.
Toprovetheinequalityoflineanddifference,itisusually
associatedwiththesumoftwolinesinatriangleisgreater
thanthirdsides,andthedifferenceislessthanthirdsides,
soitcanbeprovedinatriangle.
Inthethreesidesofatrianglerelationshipthatunequal
relationshipbetweenthesegment,suchasdirectevidence,can
connecttwooralongTingedgetoformatriangle,theline
appearsintheconclusioninoneorseveraltriangles,and
provedwiththeunequalrelationshipbetweenthethreesides
ofatriangle,suchas:
Inthetrianglecornerandcorneritisnotgreaterthanany
adjacentifdirectcertificatedoesnotcomeout,canconnect
twoorasideextension,
Toverifythestructureofthetriangle,atriangleinthe
Bighornangleposition,smallangleintheinteriorposition
ofthetriangle,theexteriorangletheorem:
Fourtheauxiliarylinethatcomesfromthemiddlepoint
Formula:
Themiddleofthetriangleistwopoints,andtheconnection
isamiddleline.Thereisamiddlelineinthetriangle,
extendingthemiddlelineandsoon.
Inatriangle,ifalittleisknownonthesideofatriangle
midpoint,itshouldfirstthinkoftriangle1ine,middle1ine,
doublecenterlineextendinganditsrelatedproperties
(hypotenuselineproperties,isoscelestrianglebottommidline,
thenthroughtheexplorationofnature),findawaytosolve
theproblem.
(1)themidlinedividestheoriginaltriangleintotwosmall
trianglesofequalsize
AsFigure1,ADisaABCline,SABD=SACD=SABC(deltadelta
deltadeltaABDanddeltaACDisbecausethebottomlevel).
Example1..InFigure2,inDeltaABC,ADisthemedian1ine,
extendingADtoE,andmakingDE=ADandDFthemiddleofdelta
DCE.TheareaoftheknownDeltaABCis2,andtheareaofthe
deltaCDFis.
Solution:becauseADisthemiddlelineofABC,soS,ACD=S,
ACD=1,ABC=,2=1,andbecauseCDisthemiddlelineofdelta
ACE,soS,Delta,CDE=S,delta,
SinceDFisthemiddlelineofdeltaCDE,soS,Delta,CDF=S,
Delta,CDE=*1=.
StardeltaCDFarea.
(two)themiddle1ineofthetriangleshouldbeconsideredfrom
themiddlepoint
Example2..AsshowninFigure3,inthequadrilateralABCD,
AB=CD,E,FarethemidpointofBCandAD,andtheextended1ines
ofBAandCDarerespectivelyEFextension1inesGandH.Proof:
/BGE=/CHE.
Proof:1inkBDandtakethemidpointofBDasM,andconnect
ME,MF,
DreamsMEisthemedianlineofthedeltaBCD,
RMECD,R/MEF=/CHE,
DreamsMFisthemedianlineofthedeltaABD,
RMFAB,R/MFE=/BGE,
AB=CDME=MFdreams,peryleneperylene/MEF=/MFE,
WhichangleBGE=angleCHE.
(three)themiddlelineshouldthinkofextendingthemiddle
line
Example3.,figure4,knowninDeltaABC,AB=5,AC=3,evenBC
onthecentrallineAD=2,thelengthoftheBC.
Solution:extendADtoE,makeDE=AD,thenAE=2AD=2*2=4.
InaACDandaEBD/ADC=/AD=ED,dreams,EDB,CD=BD,
StardeltaACD=EBD,RAC=BE,
ThusBE=AC=3.
InABE,forAE2+BE2=42+32=25=AB2,theangleE=90degrees,
RBD===,soBC=2BD=2.
4.casesofFigure5,knownasdeltaABC,ADisthebisector
ofangleBAC,ADandBConthesideofthemidline.Confirmation:
DeltaABCisisoscelestriangle.
Proof:extendADtoE,makeDE=AD.
Examp1e3provable:
DeltaDeltaBED=CAD,
TheEB=AC/E=/2,
And/1=/2,
L/1=/E,
AB=EBandAB=AC,namelyR,DeltaABCisanisoscelestriangle.
(four)thenatureofthecenterlineoftherightangled
triangle
5.casesofFigure6,knownasAB//DCABCD,ACladder,BCgroup,
ADgroupBD,verify:AC=BD.
Proof:ABDE,CEEpoint,link,DE,CErespectivelyRtDelta
ABD,DeltaABCRtABonthehypotenuseline,theDE=CE=AB/CDE=
/DCE,therefore.
AB//DCdreams,
L/CDE=/DCE=/2/1,
L/1=/2,
InDeltaADEanddeltaBCE,
DE=CE/1=/imprisonment,2,AE=BE,
StardeltaADEDeltaBCE=AD=BC,R,thusABCDistrapezoid
isoscelestrapezoid,soAC=BD.
(five)thebisectoroftheangleandthelineofaverticalline
shouldbethoughtofthemiddlelineoftheisoscelestriangle
(six)midlineextension
Auxiliarylineofcongruenttriangles
Themethodoffindingcongruenttriangles:
(1)wecanproceedfromtheconclusiontoseewhichtwopossible
congruenttrianglesaretobeprovedinthetwoequalsegments
(orangles);
(2)fromtheknownconditions,wecanseewhichtwotriangles
areequalunderthegivenconditions;
(3)consideringtheconditionsandconclusions,theycan
determinewhichtwotrianglesarecongruentwitheachother;
(4)iftheabovemethodsarenotpossible,wemayconsider
addingauxiliarylinestoformcongruenttriangles.
Themethodofcommonauxiliarylineintriangle:
Extendingthemiddle1ineandconstructingcongruent
triangles;
Usingfoldingtoconstructcongruenttriangles;
Third,drawparallellinesandconstructcongruenttriangles;
Makeisoscelestriangleofconnectionstructure.
Commonauxiliarylinemethodhasthefollowingseveralkinds:
Theisoscelestrianglecanbeusedastheheightonthebottom
edge,andtheproblemissolvedbythenatureof"three1i
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年在線預(yù)約服務(wù)協(xié)議
- 2025年倉庫出租合同
- 2025年現(xiàn)金贈與合同的風(fēng)險評估
- 2025年進口擔保協(xié)議
- 2025年存貨質(zhì)押法律法規(guī)匯編
- 2025版委托代銷與授權(quán)經(jīng)營合同3篇
- 2025版高端酒店客房裝修與維護服務(wù)合同4篇
- 2025年度商鋪租賃預(yù)付定金合同范本4篇
- 二零二五年度企業(yè)裁員補償解除勞動合同賠償協(xié)議
- 二零二五年度鐵路貨運合同貨物運輸合同糾紛解決機制協(xié)議
- 機電安裝工程安全管理
- 2024年上海市第二十七屆初中物理競賽初賽試題及答案
- 信息技術(shù)部年終述職報告總結(jié)
- 高考滿分作文常見結(jié)構(gòu)完全解讀
- 理光投影機pj k360功能介紹
- 六年級數(shù)學(xué)上冊100道口算題(全冊完整版)
- 八年級數(shù)學(xué)下冊《第十九章 一次函數(shù)》單元檢測卷帶答案-人教版
- 帕薩特B5維修手冊及帕薩特B5全車電路圖
- 小學(xué)五年級解方程應(yīng)用題6
- 年月江西省南昌市某綜合樓工程造價指標及
- 作物栽培學(xué)課件棉花
評論
0/150
提交評論