![湖北宜昌2024屆中考四模數(shù)學試題含解析_第1頁](http://file4.renrendoc.com/view8/M00/3F/0F/wKhkGWbyFGiASg5LAAJB_Vc5R7U420.jpg)
![湖北宜昌2024屆中考四模數(shù)學試題含解析_第2頁](http://file4.renrendoc.com/view8/M00/3F/0F/wKhkGWbyFGiASg5LAAJB_Vc5R7U4202.jpg)
![湖北宜昌2024屆中考四模數(shù)學試題含解析_第3頁](http://file4.renrendoc.com/view8/M00/3F/0F/wKhkGWbyFGiASg5LAAJB_Vc5R7U4203.jpg)
![湖北宜昌2024屆中考四模數(shù)學試題含解析_第4頁](http://file4.renrendoc.com/view8/M00/3F/0F/wKhkGWbyFGiASg5LAAJB_Vc5R7U4204.jpg)
![湖北宜昌2024屆中考四模數(shù)學試題含解析_第5頁](http://file4.renrendoc.com/view8/M00/3F/0F/wKhkGWbyFGiASg5LAAJB_Vc5R7U4205.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北宜昌2024屆中考四模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算結果正確的是()A.x2+2x2=3x4 B.(﹣2x2)3=8x6C.x2?(﹣x3)=﹣x5 D.2x2÷x2=x2.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.83.某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同.設原計劃平均每天生產(chǎn)x臺機器,根據(jù)題意,下面所列方程正確的是()A.= B.=C.= D.=4.已知函數(shù)的圖象與x軸有交點.則的取值范圍是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠35.下列函數(shù)中,y隨著x的增大而減小的是()A.y=3x B.y=﹣3x C. D.6.如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°7.某大學生利用課余時間在網(wǎng)上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數(shù)關系式為y=–4x+440,要獲得最大利潤,該商品的售價應定為A.60元B.70元C.80元D.90元8.cos30°=()A. B. C. D.9.已知圓錐的側面積為10πcm2,側面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm10.如圖,等邊△ABC的邊長為1cm,D、E分別AB、AC是上的點,將△ADE沿直線DE折疊,點A落在點A′處,且點A′在△ABC外部,則陰影部分的周長為()cmA.1 B.2 C.3 D.411.在以下三個圖形中,根據(jù)尺規(guī)作圖的痕跡,能判斷射線AD平分∠BAC的是()A.圖2 B.圖1與圖2 C.圖1與圖3 D.圖2與圖312.已知等邊三角形的內切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,圓錐底面圓心為O,半徑OA=1,頂點為P,將圓錐置于平面上,若保持頂點P位置不變,將圓錐順時針滾動三周后點A恰好回到原處,則圓錐的高OP=_____.14.不等式組的解集為_____.15.拋物線y=x2﹣4x+與x軸的一個交點的坐標為(1,0),則此拋物線與x軸的另一個交點的坐標是______.16.如果關于x的方程x2+2ax﹣b2+2=0有兩個相等的實數(shù)根,且常數(shù)a與b互為倒數(shù),那么a+b=_____.17.在△ABC中,∠C=90°,若tanA=,則sinB=______.18.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.求證:CD是⊙O的切線;若∠D=30°,BD=2,求圖中陰影部分的面積.20.(6分)已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數(shù)y=ax2+bx的解析式;(2)若當-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.21.(6分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結果保留一位小數(shù).)22.(8分)某超市對今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進行了統(tǒng)計,并繪制如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.根據(jù)圖中信息解答下列問題:(1)該超市“元旦”期間共銷售個綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計圖中所對應的扇形圓心角是度;(2)補全條形統(tǒng)計圖;(3)如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數(shù)?23.(8分)如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=-8x的圖象交于A、B兩點,與坐標軸交于M、N兩點.且點A的橫坐標和點B的縱坐標都是﹣1.求一次函數(shù)的解析式;求△AOB的面積;觀察圖象,直接寫出y24.(10分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù).25.(10分)某電器商場銷售甲、乙兩種品牌空調,已知每臺乙種品牌空調的進價比每臺甲種品牌空調的進價高20%,用7200元購進的乙種品牌空調數(shù)量比用3000元購進的甲種品牌空調數(shù)量多2臺.求甲、乙兩種品牌空調的進貨價;該商場擬用不超過16000元購進甲、乙兩種品牌空調共10臺進行銷售,其中甲種品牌空調的售價為2500元/臺,乙種品牌空調的售價為3500元/臺.請您幫該商場設計一種進貨方案,使得在售完這10臺空調后獲利最大,并求出最大利潤.26.(12分)某超市預測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?27.(12分)如圖,在平行四邊形ABCD中,AB<BC.利用尺規(guī)作圖,在AD邊上確定點E,使點E到邊AB,BC的距離相等(不寫作法,保留作圖痕跡);若BC=8,CD=5,則CE=.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
直接利用整式的除法運算以及積的乘方運算法則、合并同類項法則分別化簡得出答案.【詳解】A選項:x2+2x2=3x2,故此選項錯誤;B選項:(﹣2x2)3=﹣8x6,故此選項錯誤;C選項:x2?(﹣x3)=﹣x5,故此選項正確;D選項:2x2÷x2=2,故此選項錯誤.故選C.【點睛】考查了整式的除法運算以及積的乘方運算、合并同類項,正確掌握運算法則是解題關鍵.2、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.3、B【解析】
設原計劃平均每天生產(chǎn)x臺機器,則實際平均每天生產(chǎn)(x+50)臺機器,根據(jù)題意可得:現(xiàn)在生產(chǎn)600臺所需時間與原計劃生產(chǎn)450臺機器所需時間相同,據(jù)此列方程即可.【詳解】設原計劃平均每天生產(chǎn)x臺機器,則實際平均每天生產(chǎn)(x+50)臺機器,由題意得:.故選B.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程.4、B【解析】試題分析:若此函數(shù)與x軸有交點,則,Δ≥0,即4-4(k-3)≥0,解得:k≤4,當k=3時,此函數(shù)為一次函數(shù),題目要求仍然成立,故本題選B.考點:函數(shù)圖像與x軸交點的特點.5、B【解析】試題分析:A、y=3x,y隨著x的增大而增大,故此選項錯誤;B、y=﹣3x,y隨著x的增大而減小,正確;C、,每個象限內,y隨著x的增大而減小,故此選項錯誤;D、,每個象限內,y隨著x的增大而增大,故此選項錯誤;故選B.考點:反比例函數(shù)的性質;正比例函數(shù)的性質.6、D【解析】
先利用互余計算出∠FDB=28°,再根據(jù)平行線的性質得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質得∠FBD=∠CBD=28°,然后利用三角形外角性質計算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點睛】本題考查了平行線的性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.7、C【解析】設銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.8、C【解析】
直接根據(jù)特殊角的銳角三角函數(shù)值求解即可.【詳解】故選C.【點睛】考點:特殊角的銳角三角函數(shù)點評:本題屬于基礎應用題,只需學生熟練掌握特殊角的銳角三角函數(shù)值,即可完成.9、C【解析】
圓錐的側面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設母線長為R,則圓錐的側面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關鍵.10、C【解析】
由題意得到DA′=DA,EA′=EA,經(jīng)分析判斷得到陰影部分的周長等于△ABC的周長即可解決問題.【詳解】如圖,由題意得:DA′=DA,EA′=EA,∴陰影部分的周長=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故選C.【點睛】本題考查了等邊三角形的性質以及折疊的問題,折疊問題的實質是“軸對稱”,解題關鍵是找出經(jīng)軸對稱變換所得的等量關系.11、C【解析】【分析】根據(jù)角平分線的作圖方法可判斷圖1,根據(jù)圖2的作圖痕跡可知D為BC中點,不是角平分線,圖3中根據(jù)作圖痕跡可通過判斷三角形全等推導得出AD是角平分線.【詳解】圖1中,根據(jù)作圖痕跡可知AD是角平分線;圖2中,根據(jù)作圖痕跡可知作的是BC的垂直平分線,則D為BC邊的中點,因此AD不是角平分線;圖3:由作圖方法可知AM=AE,AN=AF,∠BAC為公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共邊,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故選C.【點睛】本題考查了尺規(guī)作圖,三角形全等的判定與性質等,熟知角平分的尺規(guī)作圖方法、全等三角形的判定與性質是解題的關鍵.12、D【解析】試題分析:圖中內切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點:正多邊形和圓.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】
先利用圓的周長公式計算出PA的長,然后利用勾股定理計算PO的長.【詳解】解:根據(jù)題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22【點睛】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.14、﹣2≤x<【解析】
根據(jù)解不等式的步驟從而得到答案.【詳解】,解不等式①可得:x≥-2,解不等式②可得:x<,故答案為-2≤x<.【點睛】本題主要考查了解不等式,解本題的要點在于分別求解①,②不等式,從而得到答案.15、(3,0)【解析】
把交點坐標代入拋物線解析式求m的值,再令y=0解一元二次方程求另一交點的橫坐標.【詳解】把點(1,0)代入拋物線y=x2-4x+中,得m=6,所以,原方程為y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴拋物線與x軸的另一個交點的坐標是(3,0).故答案為(3,0).【點睛】本題考查了點的坐標與拋物線解析式的關系,拋物線與x軸交點坐標的求法.本題也可以用根與系數(shù)關系直接求解.16、±1.【解析】
根據(jù)根的判別式求出△=0,求出a1+b1=1,根據(jù)完全平方公式求出即可.【詳解】解:∵關于x的方程x1+1ax-b1+1=0有兩個相等的實數(shù)根,∴△=(1a)1-4×1×(-b1+1)=0,即a1+b1=1,∵常數(shù)a與b互為倒數(shù),∴ab=1,∴(a+b)1=a1+b1+1ab=1+3×1=4,∴a+b=±1,故答案為±1.【點睛】本題考查了根的判別式和解高次方程,能得出等式a1+b1=1和ab=1是解此題的關鍵.17、【解析】分析:直接根據(jù)題意表示出三角形的各邊,進而利用銳角三角函數(shù)關系得出答案.詳解:如圖所示:∵∠C=90°,tanA=,∴設BC=x,則AC=2x,故AB=x,則sinB=.故答案為:.點睛:此題主要考查了銳角三角函數(shù)關系,正確表示各邊長是解題關鍵.18、【解析】
解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質以及銳角三角函數(shù)關系等知識,得出A′點位置是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)陰影部分面積為【解析】【分析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質,等邊三角形的性質等知識,熟練掌握和靈活運用相關知識是解題的關鍵.20、(1)y=x2+x;(2)t=-4,r=-1.【解析】
(1)由①聯(lián)立方程組,根據(jù)拋物線y=ax2+bx與直線y=x只有一個交點可以求出b的值,由②可得對稱軸為x=1,從而得a的值,進而得出結論;(2)進行分類討論,分別求出t和r的值.【詳解】(1)y=ax2+bx和y=x聯(lián)立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵對稱軸為=1,∴=1,∴a=,∴y=x2+x.(2)因為y=x2+x=(x-1)2+,所以頂點(1,)當-2<r<1,且r≠0時,當x=r時,y最大=r2+r=1.5r,得r=-1,當x=-2時,y最小=-4,所以,這時t=-4,r=-1.當r≥1時,y最大=,所以1.5r=,所以r=,不合題意,舍去,綜上可得,t=-4,r=-1.【點睛】本題考查二次函數(shù)綜合題,解題的關鍵是理解題意,利用二次函數(shù)的性質解決問題.21、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據(jù)題意構造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.22、(1)2400,60;(2)見解析;(3)500【解析】整體分析:(1)由C品牌1200個占總數(shù)的50%可得雞蛋的數(shù)量,用A品牌占總數(shù)的百分比乘以360°即可;(2)計算出B品牌的數(shù)量;(3)用B品牌與總數(shù)的比乘以1500.解:(1)共銷售綠色雞蛋:1200÷50%=2400個,A品牌所占的圓心角:×360°=60°;故答案為2400,60;(2)B品牌雞蛋的數(shù)量為:2400﹣400﹣1200=800個,補全統(tǒng)計圖如圖:(3)分店銷售的B種品牌的綠色雞蛋為:×1500=500個.23、(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4【解析】試題分析:(1)先根據(jù)反比例函數(shù)解析式求得兩個交點坐標,再根據(jù)待定系數(shù)法求得一次函數(shù)解析式;(1)將兩條坐標軸作為△AOB的分割線,求得△AOB的面積;(3)根據(jù)兩個函數(shù)圖象交點的坐標,寫出一次函數(shù)圖象在反比例函數(shù)圖象上方時所有點的橫坐標的集合即可.試題解析:(1)設點A坐標為(﹣1,m),點B坐標為(n,﹣1)∵一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y1=﹣8x∴將A(﹣1,m)B(n,﹣1)代入反比例函數(shù)y1=﹣8x∴將A(﹣1,4)、B(4,﹣1)代入一次函數(shù)y1=kx+b,可得4=-2k+b-2=4k+b,解得∴一次函數(shù)的解析式為y1=﹣x+1;,(1)在一次函數(shù)y1=﹣x+1中,當x=0時,y=1,即N(0,1);當y=0時,x=1,即M(1,0)∴=12×1×1+12×1×1+1(3)根據(jù)圖象可得,當y1>y1時,x的取值范圍為:x<﹣1或0<x<4考點:1、一次函數(shù),1、反比例函數(shù),3、三角形的面積24、(1)60,90;(2)見解析;(3)300人【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數(shù),繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);∴扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統(tǒng)計圖得:(3)根據(jù)題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù)為300人.【點睛】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的相關知識點.25、(1)甲種品牌的進價為1500元,乙種品牌空調的進價為1800元;(2)當購進甲種品牌空調7臺,乙種品牌空調3臺時,售完后利潤最大,最大為12100元【解析】
(1)設甲種品牌空調的進貨價為x元/臺,則乙種品牌空調的進貨價為1.2x元/臺,根據(jù)數(shù)量=總價÷單價可得出關于x的分式方程,解之并檢驗后即可得出結論;(2)設購進甲種品牌空調a臺,所獲得的利潤為y元,則購進乙種品牌空調(10-a)臺,根據(jù)總價=單價×數(shù)量結合總價不超過16000元,即可得出關于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤=單臺利潤×購進數(shù)量即可得出y關于a的函數(shù)關系式,利用一次函數(shù)的性質即可解決最值問題.【詳解】(1)由(1)設甲種品牌的進價為x元,則乙種品牌空調的進價為(1+20%)x元,由題意,得,解得x=1500,經(jīng)檢驗,x=1500是原分式方程的解,乙種品牌空調的進價為(1+20%)×1500=1800(元).答:甲種品牌的進價為1500元,乙種品牌空調的進價為1800元;(2)設購進甲種品牌空調a臺,則購進乙種品牌空調(10-a)臺,由題意,得1500a+1800(10-a)≤16000,解得≤a,設利潤為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學生創(chuàng)業(yè)項目策劃書和模板
- 大學生創(chuàng)業(yè)項目logo
- 小學四年級數(shù)學三位數(shù)除以兩位數(shù)綜合作業(yè)口算題大全附答案
- 職業(yè)規(guī)劃與選擇
- 大學生活導航
- 春分氣象科普
- 餐飲業(yè)新動態(tài)
- 初中生改名申請書范文
- DB36T-桑芽茶加工技術規(guī)程編制說明
- 數(shù)字貿易產(chǎn)教融合共同體運作模式與管理規(guī)范編制說明
- 彈藥安全管理知識講座
- 消化內科肝硬化“一病一品”
- 物流營銷(第四版) 課件 胡延華 第1、2章 物流營銷概述、物流營銷市場調查與分析
- 孩子撫養(yǎng)費起訴狀范本:免修版模板范本
- 食品安全防護計劃
- 廣西太陽能資源分析
- 規(guī)范性文件備案審查意見反饋表
- 六年級上冊數(shù)學書蘇教版答案
- 體檢中心獎懲細則
- 2023年全國中小學思政課教師網(wǎng)絡培訓研修總結心得體會
- CDE網(wǎng)站申請人之窗欄目介紹及用戶操作手冊
評論
0/150
提交評論