關(guān)注AI鴻溝:塑造未來勞動世界的全球視角(英)-24正式版-WN8_第1頁
關(guān)注AI鴻溝:塑造未來勞動世界的全球視角(英)-24正式版-WN8_第2頁
關(guān)注AI鴻溝:塑造未來勞動世界的全球視角(英)-24正式版-WN8_第3頁
關(guān)注AI鴻溝:塑造未來勞動世界的全球視角(英)-24正式版-WN8_第4頁
關(guān)注AI鴻溝:塑造未來勞動世界的全球視角(英)-24正式版-WN8_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

MindtheAIDivideShapingaGlobalPerspectiveontheFutureofWorkMindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWorkCopyright?2024UnitedNationsAllrightsreservedworldwide.Nopartofthispublicationmay,forcommercialpurposes,bereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopy,recordingoranyinformationstorageandretrievalsystemnowknownortobeinvented,withoutwrittenpermissionbythepublisher.RequeststoreproduceexcerptsortophotocopyshouldbeaddressedtotheCopyrightClearanceCenterat.Allotherqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedto:UnitedNationsPublications,405East42ndStreet,S-11FW001,NewYork,NY10017,UnitedStatesofAmerica.Email:permissions@.Website:.ThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheSecretariatoftheUnitedNationsconcerningthelegalstatusofanycountry.PDFISBN:9789211066524ForewordTheunevenadoptionofArti?cialIntelligence(AI)isacriticalissuethatgoesbeyondeconomicgrowth.Itimpactsglobalequity,fairnessandthesocialcontractthatisattheheartofsocialjustice.Disparitiesinaccesstorobustinfrastructure,advancedtechnology,qualityeducationandtrainingaredeepeningexistinginequalities.AstheglobaleconomyincreasinglyshiftstowardsAI-drivenproductionandinnovation,lessdevelopedcountriesriskbeingleftfurtherbehind,exacerbatingeconomicandsocialdivides.Withouttargetedandconcertedeffortstobridgethisdigitaldivide,AI’spotentialtofostersustainabledevelopmentandalleviatepovertywillremainunrealized,leavingsigni?cantportionsoftheglobalpopulationdisadvantagedintherapidlyevolvingtechnologicallandscape.DuringtheconsultationsheldbytheSecretary-General’sHigh-levelAdvisoryBodyonArti?cialIntelligence,ithasbecomeclearthattheworldofworkisattheheartoftheadoptionofAI.ItisthuscriticaltounderstandthepotentialforAItoaffectlabourdemandandtransformoccupations.Itisattheworkplacewherethepotentialforproductivitygainsandimprovedworkingconditionsforthebene?tofworkers,theirfamilies,andsocietiesatlarge,canberealized.Butsuchbene?tswillnothappenontheirown;theywillonlybeachievediftherightconditionsareinplace,includingtheavailabilityofdigitalinfrastructureandskills,butalsoacultureofsocialdialoguethatfostersapositiveintegrationoftechnology.PromotinginclusivegrowthrequiresproactivestrategiestosupportAIdevelopmentincountriesonthewrongsideoftheAIdivide.Thisinvolvesenhancingdigitalinfrastructure,promotingtechnologytransfer,buildingAIskills,andensuringthatalljobsalongtheAIvaluechainareofgoodqualityandimprovethelivesofworkingpeople.ByprioritizinginternationalcollaborationinAIcapacitybuilding,wecancreateamoreequitableandresilientAIecosystem,unlockingopportunitiesforsharedprosperityandhumanadvancementworldwide.WelookforwardtocontinuingourcollaborativeeffortstoshapetheglobalgovernanceofAI,upholdhumandignityandlaborstandards,andexpandeconomicopportunityforall.AmandeepSinghGillGilbertF.HoungboUnitedNationsSecretary-General’sEnvoyonTechnologyDirector-GeneraloftheInternationalLabourOrganizationMindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|3ContentsForeword3Section1.Introduction5Section2.Unevenground:UnderstandingAI’sroleinreshapinglabourmarketsEnsuringjobqualityunderaugmentationSection3.TheAIvaluechainandthedemandforskillsAdaptingskillsfortheAIlandscape610111417Section4.Movingforward:Strengtheninginternationalcooperation,buildingnationalcapacity,andaddressingAIintheworldofworkStrengthenedinternationalcooperationonAIBuildingnationalAIcapacity1718182021TowardsapositiveintegrationofAIintheworldofworkAcknowledgmentsReferences4|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWorkSection1IntroductionTherapidadvancementofArti?cialIntelligence(AI)promiseswidespreadtransformationsforoursocieties,oureconomiesandtheworldofwork.Whilesuchadvancesoffertremendousopportunitiesforinnovationandproductivity,theunevenratesofinvestment,adoptionanduseamongcountriesrisksexacerbatingthealreadywidedisparitiesinincomeandqualityoflife.Thereisapronounced“AIdivide”emerging,wherehighincomenationsdisproportionatelybene?tfromAIadvancements,whilelow-andmedium-incomecountries,particularlyinAfrica,lagbehind.Worse,thisdividewillgrowunlessconcertedactionistakentofosterinternationalcooperationinsupportofdevelopingcountries.Theabsenceofsuchpolicieswillnotonlywidenglobalinequalities,butriskssquanderingthepotentialofAItoserveasacatalystforwidespreadsocialandeconomicprogress.dialogue.Socialdialogueonthedesign,implementationanduseoftechnologyattheworkplace,aswellasinthedevelopmentofregulationsessentialforensuringrespectofworkers’fundamentalrights,isneeded.Indeed,whethertheintegrationoftechnologyintoworkprocessesspursproductivitygrowthorimprovesworkingconditionsinsupportofsocialjusticedependsinlargepartonthestrengthofsuchcollaborationanddialogue.SovereigneffortsplayacrucialroleinshapingAIcapacitybuildingascountriesasserttheirautonomyindevelopingstrategiesandpoliciestailoredtotheiruniquesocio-economiccontexts.Localprocesses,drivenbyculturalvalues,politicaleconomies,andsocietalneeds,cansigni?cantlyimpacttheeffectivenessandsustainabilityofAIinitiatives.However,disparitiesinresourcesandexpertiseremainandcanhinderAIdevelopmentintheGlobalSouth.Inresponse,thereisagrowingrecognitionoftheresponsibilityofdevelopedcountriestosupportcapacitybuildingeffortsinresourcescarcecountries.AsoutlinedintherecentInterimReportoftheUnitedNationsSecretary-General’sHigh-levelAdvisoryBodyonAI1,thisrecognitionextendsbeyond?nancialaidtoincludeknowledgesharing,skillsdevelopment,technologytransfer,aswellascollaborativeresearchanddevelopmentpartnerships.ByleveragingtheiradvancedAIecosystems,theGlobalNorthcanhelpbridgethegapandempowercountriesintheGlobalSouthtoharnessAIforsustainabledevelopment,whilerespectingtheirsovereigntyandpromotinglocalinnovationecosystems.ByprioritizingglobalcollaborationforAIcapacitybuilding,theinternationalcommunitycannurtureamoreequitableandresilientglobalAIecosystem,unlockingopportunitiesforsharedprosperityandhuman?ourishingacrosstheworld.WhileAIwillpotentiallyaffectmanyaspectsofourdailylives,itsimpactislikelytobemostacuteintheworkplace.WealthiercountriesaremoreexposedtothepotentialautomatingeffectsofAIintheworldofwork,buttheyarealsobetterpositionedtorealizetheproductivitygainsitoffers.Developingcountries,ontheotherhand,maybetemporarilybufferedbecauseofalackofdigitalinfrastructure,butthisbufferrisksturningintoabottleneckforproductivitygrowth,andmoreimportantly,forthefutureprosperityoftheirpopulations.EnsuringinclusivegrowthinthefuturerequiresproactivemeasurestoempowerAIdevelopmentincountriesatthedisadvantagedreceivingendofthedigitaldivide,fosteringdigitalinfrastructureaswellasAIskills,andpromotingtechnologytransferandabsorption.SuchdigitalskillscanalsoenableamorepositiveintegrationofAIintheworkplace,particularlywhencombinedwithsocial1/ai-advisory-bodyMindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|5Section2UnevengroundUnderstandingAI’sroleinreshapinglabourmarketsResearchonthepossibleeffectsofgenerativeAIonemploymentacrosstheworldsuggeststhatwhiletherearelikelytobeimportanttransformativeeffectsonsomeoccupations,impactsintermsofjoblossesaremuchlessthanheadline?guresappearinginthemedia,andcertainlydonotpointtoajoblessfuture.AccordingtoananalysisundertakenbytheInternationalLabourOrganizationonthepotentialexposureoftaskstogenerativeAItechnology,clericalsupportworkersarethemostexposedoccupationalgroupwith24percentofthetasksinthesejobsassociatedwithhighlevelofexposuretoautomationandanother58percentwithmedium-levelexposure(seeFigure1).2Otheroccupationalgroupsarelessexposed,withonly1to4percentoftasksconsideredashavinghighautomationpotential,andmedium-exposedtasksnotexceeding25percent.Thismeansthat,whilecertaintasksintheseoccupationscouldpotentiallybeautomated,mosttasksstillrequirehumanintervention.Suchpartialautomationcouldenableef?ciencygains,byallowinghumanstospendmoretimeonotherareasofwork.Importantly,taskautomationdoesnotnecessarilyimplyredundancies,asthetechnologycanalsocomplementoraugmenthumanlabourwhenonlycertaintasksareautomated.Whethertheadoptionofthetechnologyleadstoautomation(jobloss)oraugmentation(jobcomplementarity)dependsonthecentralityoftheautomatedtasktotheoccupation,howthetechnologyisintegratedFigure1:Taskswithmediumandhigh-levelexposuretogenerativeAItechnologybymajoroccupationalgroup(ISCO1-digit)Source:Gmyreketal.,2023.2Thestudyanalysesthepotentialforautomationwiththe436internationallystandardizedISCO-08

occupationsandthenclassi?estheoccupationbasedonthemeanandstandarddeviationofthescore.Formoredetailssee[1].6|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWorkintoworkprocessesandmanagement’sdesiretoretainhumanstoperformoroverseesomeofthetasks,despitethepotentialofautomation.AItechnologyismuchhigher,duetotheirover-representationinclericaloccupations(see?gure2).Inmostregions,thepotentialexposureofwomenismorethandoublethatofmen’sexposure.Someofthisemploymentisinbusinessprocessoutsourcing,suchascontactorcallcenterwork,whichisanimportantpartoftheeconomyofseveraldevelopingcountries,includingIndiaandthePhilippines.Theindustryisanimportantsourceofformalandrelativelywell-paidemployment,particularlyforwomen.Whilepotentialexposuredoesnotnecessarilytranslatetodisplacement,itisclearthattheadvancesintechnologymayputsomeofthesejobsatrisk.3TheILOanalysisusesoccupationalexposurescores(themeanexposureofeachofthetaskswithinanoccupation)andappliesthesescorestoemploymentdatafromlabourforcesurveysofmorethan140countriestoassesspotentialemploymentimpactattheglobalandregionallevel.Withrespecttoautomation,theshareofemploymentthatisexposedishighestinEuropeandNorthernAmerica,re?ectingthegreatereconomicandlabourmarketdiversi?cationoftheseregions.InLatinAmerica,AsiaandAfrica,theshareofemploymentpotentialexposedtoautomationismuchsmaller,duetothegreatershareofworkersemployedinoccupationsthatwouldnotbeexposedtogenerativeAItechnologysuchasinagriculture,transportorfoodvending.Another?ndingisthatasigni?cantlylargershareoftotalemploymentisinoccupationswithhighaugmentationpotential,andthisholdsacrossregions,from10.2percentinSub-SaharanAfricato16.1percentinSoutheasternAsiaandthePaci?c(See?gure3).Thus,thepotentialforoccupationstobene?tfromtheproductivity-enhancingeffectsofthetechnologyisrelativelysimilaracrosscountries.Inpractice,however,itislesslikelyNevertheless,women’spotentialexposuretotheautomatingeffectsofgenerativeFigure2:Potentialexposuretoautomationbyglobalsub-region3‘AICouldKilloffMostCallCentres,SaysTataConsultancyServicesHead’,April25,2024.MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|7Figure3:Potentialexposuretoaugmentationbyglobalsub-regiontoberealizedduetoconstraintsinphysicalinfrastructure(electricityaccess,broadband)aswellasdigitalskills.Indeed,subsequentresearchthatincorporatesdataoncomputeruseatwork[2]revealsthatmanyoftheoccupationswithpotentialforaugmentationhaverelativelylowusageofcomputeratwork,suggestingthattheconditionsarenotinplaceforrealizingthepotentialproductivitygains.AscanbeseeninFigure4,theshareofworkerswithoutaccesstoacomputeratwork(“nocomputer”)exceedsthosewhouseacomputerin9ofthe16countrieslisted.AsFigure4:PotentialexposuretoaugmentationandcomputeruseatworkSource:Gmyrek,WinklerandGarganta,2024.8|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWorksuch,thelikelihoodtorealizeproductivitygainsfromgenerativeAItechnologywillbelimited.ofgenerativeAItechnologyintheircallcentrework,theirdigitalinfrastructureandskilledworkforcecanalsobeanassetforspawningthegrowthofcomplementaryindustries.Harnessingsuchpotentialisparamount.Figure5givesinformationonthecharacteristicsofthosewhomightbeaffectedbyautomationfromgenerativeAItechnologyinLatinAmerica.Asthedatashow,itiseducatedwomenlivinginurbanareasandbelongingtothetop?fthoftheincomedistributionthataremostexposed.ForLatinAmerica,theseoccupationsareoverwhelminglyinsalaried,formalemploymentandinthesectorsof?nance,professionalservicesandpublicadministration.Inshort,theyaregoodjobs,whoselosswouldhavenegativemultipliereffectsbotheconomicallyandsocially.Indeed,withtherightconditionsinplace,anewwaveoftechnologycouldfuelgrowthopportunities.Inthepast,technologicaladvancementshavespurrednewandsuccessfulindustriesinmanydevelopingcountries.OnesuchexampleistheM-Pesamoneyservice,whichreliedonthediffusionofmobiletelephonesinKenya.Theservice,inturn,increased?nancialinclusionwhichhelpedtopropelthegrowthofSMEsandledtocreationofanetworkof110,000agents,40timesthenumberofbankATMsinKenya[3];[4].Similarly,astudyofthediffusionof3GcoverageinRwandabetween2002and2019foundthatincreasedmobileinternetcoverageTheanalysisdoesnotaddressthepotentialfornewjobcreation.Thus,whilemiddle-incomecountriessuchasIndiaandthePhilippines,aremoreexposedtotheautomatingeffectsFigure5:Characteristicsofpersonsholdingoccupationsmostexposedtoautomation,LatinAmericaSource:Gmyrek,WinklerandGarganta,2024(forthcoming).MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|9waspositivelyassociatedwithemploymentgrowth,increasingbothskilledandunskilledoccupations[5].Scholars[6]also?ndpositiveemploymenteffects,fromthearrivalofinternetin12Africancountries,albeitwithaslightbiastowardsskilledoccupations.Thesegainsareattributedtoincreasesinproductivityandgrowthofmarketsthatfollowedincreasedconnectivity,underliningtheneedforsuchinvestments,givenimportantmultipliereffectsontheeconomyandlabourmarkets.Asaresult,whethertheeffectoftechnologyonworkingconditionsispositiveornegativedependsinlargepartonthevoicethatworkershaveinthedesign,implementationanduseoftechnology.Havingsuchagencyreliesinturnontheopportunitiesforworkerparticipationanddialogue.Thiscantakeplaceeitherthroughformalizedsettings,suchasworkscouncilsorguidanceprovidedincollectivebargainingagreements,orlessformally,inworkplaceswherethereisahighdegreeofemployeeengagement.StudiesinEuropehaveshownthatitiscountrieswithstrongerandmorecooperativeformsofworkplaceconsultation,essentiallytheNordiccountriesandGermany,whereworkersaremoreopentotechnologicaladoptionattheworkplace[10].EnsuringjobqualityunderaugmentationAnotherareaofconcernisabouttheimpactofAItechnologyonworkingconditionsandjobqualitywhenthetechnologyisintegratedintotheworkplace.Whilesuchintegrationintoworktaskscanpotentiallypromotemoreengagingworkifroutinetasksareautomated,itcanalsobeimplementedinwaysthatlimitsworkers’agencyoracceleratesworkintensity.ConcernsoverAI’sintegrationattheworkplacehasfocusedonthegrowthofalgorithmicmanagement,essentiallyworksettingsinwhich“humanjobsareassigned,optimized,andevaluatedthroughalgorithmsandtrackeddata”[7].Algorithmicmanagementisade?ningfeatureofdigitallabourplatforms,butitisalsopervasiveinof?ineindustriessuchasthewarehousingandlogisticssectors.Inwarehousesanautomated,“voice-picking”systemdirectswarehousestafftopickcertainproductsinthewarehouse,whileusingdatacollectiontomonitorworkersandsetthepaceofwork[8].Besideslackingautonomytoorganizetheirworkorsetitspace,workersalsohavelittleabilitytoprovidefeedbackordiscusswithmanagementabouttheorganizationofwork[9].TheintegrationofgenerativeAIintoother?eldssuchasbanking,insurance,socialservices,andcustomerservicemorebroadlymayhaveasimilareffect.Technologicaladvancementsareoftenfeltmoreimmediatelyattheworkplacelevelandareusuallybestaddressedattheworkplace.10|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWorkSection3TheAIvaluechainandthedemandforskillsLiketheproductionofmanygoodsandWhendataiscollected,itisusuallyservicesintheglobaleconomy,AIhasitsownvaluechain.AsdepictedinFigure6,therearedifferentstagesoftheAIvaluechain,eachwithspeci?chumanandsocialinfrastructureneeds.Asistypicalinmostglobalvaluechains,stagesdifferintheamountofvaluereceivedforthecontributionmade,withlower-valueaddedactivitiespredominantinmiddleandlow-incomecountriesanddesignanddeploymentassociatedwithhigher-incomecountries.unstructured.Highlyskilleddataengineerswillpre-processthedataintoausableformat,but‘datalabelers’areneededtolabelandclassifydatasothatitisusable.Labelledandannotateddatasetsarecriticalforthedevelopmentandeffectivenessofmachinelearningmodels.WorkersinvolvedindataenrichmentcarryoutanarrayoftasksthatincludemarkingradiologyscanstoaidincreatingAIsystemscapableofdetectingcancer;categorizingtoxicandunsuitableonlinecontenttoimprovecontentmoderationalgorithmsordiminishthenegativityinlargelanguagemodelresponses;annotatingvideofootagefromdrivingsessionstotrainautonomousvehicles;editinglargelanguagemodeloutputstoboosttheirfunctionality;andmore.4DataisfundamentaltothedevelopmentandoperationofAIsystems.Human-prepareddataisfedintoAIsystemstohelpthemlearnthenecessaryconnectionsandpatternsforfunctionality.Thesourcesofthisdataarediverse,dependingonthesystem’spurpose.Publiclyavailabledata,suchasUnitedNationsdocumentsusedfortrainingtranslationprograms,contributedtoadvancesinnaturallanguageprocessing.Proprietarydataisalsocrucial,particularlyinworkplaceapplications,likecallcenterrecordingsusedtotrainchatbotsforcustomerservice.Withglobalconnectivity,datacollectioncontinuestoprovidetheessentialrawmaterialforfutureAIapplications.Contentmoderationistheprocessofmonitoringand?lteringuser-generatedcontentondigitalplatforms,suchassocialmedia,forums,andwebsites,toensurethatitcomplieswiththeplatform’sguidelinesandpolicies.Thegoalofcontentmoderationistomaintainasafe,respectful,andpositiveenvironmentforallusersbyremovingorFigure6:ValuechainofAI1234567Note:Orangerepresentstheactivitiesthathavelowervalue-added.Source:Authors’elaboration.4ValuingDataEnrichmentWorkers:TheCaseforaHuman-CentricApproachtoAIDevelopment|UnitedNationsMindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|11?aggingcontentthatisinappropriate,offensive,harmful,orillegal.Contentmoderationcanbeperformedmanuallybyhumanmoderatorsorautomaticallybyusingalgorithmsandmachinelearningtools.Thetypesofcontentthatmaybesubjecttomoderationcanvarywidely,includingbutnotlimitedtohatespeech,harassment,violence,nudity,andfalseinformation.Evenwiththeuseofalgorithmsandmachinelearningtoolsforcontentmoderation,thereistypicallyalwaysahumaninvolvedintheprocess.Thesetechnologiescanhelpautomateandscalethemoderationprocess,buttheyarenotperfectandcansometimesmakemistakesormissnuancesthatahumanmoderatorwouldbeabletopickupon.afewsimplelinesofcodewhenworkingonanalgorithm[11].InadditiontoplatformssuchasAMTandAppen,datalabelerssometimesworkthroughthird-partycompanieshiredbyleadingtech?rms,inasubcontractingrelationship.AlthoughtherearestillmanydatalabelersworkingintheUnitedStatesinEurope,muchoftheworkisbeingdoneindevelopingcountries,giventhelowremunerationassociatedwiththework.Whileprecise?guresonthenumbersofpersonsworkingasdatalabelersdonotexist,estimatesrangeinthetensofmillions,anddemandforsuchworkislikelytocontinueasAIdatasetsandtrainingneedsgrow[12].ThesizeofthemarketisestimatedatbetweenUS$1-$3billionandlikelytoexperiencedouble-digitgrowthoverthenext5years[13].Inmanycases,algorithmsareusedto?agorprioritizecontentforreviewbyhumanmoderators,whothenmakethe?naldecisiononwhetherthecontentshouldberemovedorallowedtoremainontheplatform.Additionally,humanmoderatorsmayalsobeinvolvedintrainingandimprovingthealgorithms,byprovidingfeedbackandlabellingdatathatcanbeusedtore?nethesystem’saccuracyandeffectiveness.Individualstaskedwithcontentmoderationdutiesinsocialmediaplatformsoftensufferfromanxiety,depression,andpost-traumaticstressdisorder,adirectconsequenceoftheircontinuousexposuretodistressingmaterialssuchasmurder,suicide,sexualassault,orchildabusevideos.Datalabelingworkdoesnotrequiremanyquali?cations,besidesliteracy,digitalskillsandaccesstocomputer(ormobiledevice)andinternet.StudiesofearningsofonlineplatformworkersintheUSthatperformthiswork,regularlyreportmedianearningsofroughly$2-$3perhour,orwellbelowthefederalminimumwageofUS$7.25[14];[11].Giventhelowlevelofpay,itisunsurprisingthatmuchofthisworkhasmovedtodevelopingcountries.Butevenfromadevelopingcountryperspective,theearningsarelow,particularlyconsideringtheskillleveloftheworkforce,withmanyworkersholdinguniversityandpost-graduatedegrees[11].Fortheworkerswhoworkthroughdigitallabourplatforms–andnotbusinessprocessoutsourcing?rms–thereistheaddedconcernthattheyarehiredasindependentcontractorsandarethusnotcoveredbytheprotectionsandbene?tsemanatingfromastandardemploymentrelationship.Moreover,analysesofearningsdifferentialsbetweenworkersinIndiadoingsimilartypesofdataannotationworkrevealedthatplatformworkersearnedtwo-thirdslessthancomparable,non-platformworkeremployees,evenbeforeaccountingforotherbene?tssuchassocialinsurancecontributions[15].Theseexamplesdemonstratehowhumansareintegraltotheprovisionofservicesmarketedordescribedas“arti?cialintelligence”.Indeed,JeffBezosdescribedAmazon’sMechanicalTurk(AMT)platformas“arti?cial-arti?cial-intelligence”asitwashumanintelligencethatwasprovidingthelabour-intensiveworkneededforarti?cialintelligencesystemstooperate.AsdescribedontheAMTsite,theplatformprovides“anon-demand,scalable,humanworkforcetocompletejobsthathumanscandobetterthancomputers,forexample,recognizingobjectsinphotos”.5Workersontheplatformareaccessiblethroughanapplicationprogramminginterface(API),allowingprogrammerstocallonworkerswith5SeeAmazonMechanicalTurkAPIReference-AmazonMechanicalTurk.Accessedon9June2024.12

|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWorkButevenamongbusinessprocessoutsourcing?rms,thereareconcernsabouttheworkingconditionsoftheseworkers,withonecasestudyofadataannotationenterprisewithof?cesinKenyarevealinglowpay,insecureworkandgender-basedworkplaceviolence[16].Furthermore,thestudyarguedthatthedataannotationskillsusedinthislineofworkwerenotessentiallytransferable,questioningthecareer-enhancingimpactofthislineofwork.havefewerthan20top-tierdatacentres.Thedisparityindatacentreconstructionisunambiguous,withtheUShavingbuilt19timesmoreleadingcloudandco-locationdatacentresthanIndia,whichhasthemostdatacentresamongemerging-marketeconomies.8TheAIdivideisstark–anditispreciselyatthisstagethatpolicyattentionisneededtosupportinvestmentsbothinphysicalinfrastructure(computingpoweror“compute”)andskills.Andsuchinvestmentsareexpensive,puttingdevelopingcountriesandtheirhome-grownstart-upsataseveredisadvantage.Forexample,OpenAIspentapproximately$78millionofcomputetotrainGPT-4,whileGoogle’sGeminiUltra’scomputecostswereestimatedat$191million[17].Movingalongthevaluechain,thesubsequentparts–modeldesign,modeltrainingandtuning,deploymentandmaintenance–representacontrastingpicturewiththeskillsneedsandworkingconditionsofdataannotationwork.Theyalsoinvolvemuchgreaterrequirementsforphysicalinfrastructure,particularlycomputepowernecessaryformodeltrainingandtuning.Thesestagesrequiretheskillsofhighlyquali?edcomputerscientistsorgraduatesfromotherSTEM6?eldsinadditiontosigni?cantinvestmentsinresearchanddevelopment.Moreover,thereareknock-oneffectsfrompre-existingmarketpositions.Leadershipintheappmarketisimportantasappsgenerateadditionaluserdatathatisthenusedtoexpandthedatabaseonwhichmachinelearningalgorithmstrainandimprove.Asia,EuropeandNorthAmericahavealmoste

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論