江蘇鹽城市時楊中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第1頁
江蘇鹽城市時楊中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第2頁
江蘇鹽城市時楊中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第3頁
江蘇鹽城市時楊中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第4頁
江蘇鹽城市時楊中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇鹽城市時楊中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知對任意實數(shù),有,且時,則時A. B.C. D.2.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:廣告費用(萬元)4235銷售額(萬元)49263954根據(jù)上表可得回歸方程中的為9.4,據(jù)此模型預(yù)報廣告費用為6萬元時銷售額為A.63.6萬元 B.65.5萬元C.67.7萬元 D.72.0萬元3.下列命題中正確的個數(shù)為()①若向量,與空間任意向量都不能構(gòu)成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對于任意非零空間向量,,若,則A.1 B.2C.3 D.44.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q5.若,則()A B.C. D.6.若,則x的值為()A.4 B.6C.4或6 D.87.九連環(huán)是我國從古至今廣為流傳的一種益智游戲,它由九個鐵絲圓環(huán)相連成串,按一定規(guī)則移動圓環(huán)的次數(shù)決定解開圓環(huán)的個數(shù).在某種玩法中,用表示解開n(,)個圓環(huán)所需的最少移動次數(shù),若數(shù)列滿足,且當(dāng)時,則解開5個圓環(huán)所需的最少移動次數(shù)為()A.10 B.16C.21 D.228.圓的圓心坐標(biāo)與半徑分別是()A. B.C. D.9.由直線上的點向圓引切線,則切線長的最小值為()A. B.C.4 D.210.已知等差數(shù)列,,,則數(shù)列的前項和為()A. B.C. D.11.連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,記,則下列說法正確的是()A.事件“”的概率為 B.事件“t是奇數(shù)”與“”互為對立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為12.在空間直角坐標(biāo)系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與雙曲線的右支交于不同的兩點,則的取值范圍__________14.雙曲線的漸近線方程為___________.15.已知為拋物線上的動點,,,則的最小值為________.16.已知存在正數(shù)使不等式成立,則的取值范圍_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線上的焦點,是拋物線上的一個動點,若動點滿足,則的軌跡方程.18.(12分)如圖,在四棱錐中,底面,,是的中點,,.(1)證明:;(2)求直線與平面所成角的正弦值.19.(12分)已知數(shù)列滿足,,,.從①,②這兩個條件中任選一個填在橫線上,并完成下面問題.(1)寫出、,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)已知等比數(shù)列的公比,,.(1)求數(shù)列的通項公式;(2)令,若,求滿足條件的最大整數(shù)n.21.(12分)如圖,在直三棱柱ABC-A1B1C1中,底面ABC是等邊三角形,D是AC的中點.(1)證明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.22.(10分)有時候一些東西吃起來口味越好,對我們的身體越有害.下表給出了不同品牌的一些食品所含熱量的百分比記為和一些美食家以百分制給出的對此種食品口味的評價分?jǐn)?shù)記為:食品品牌12345678910所含熱量的百分比25342019262019241914百分制口味評價分?jǐn)?shù)88898078757165626052參考數(shù)據(jù):,,,參考公式:,(1)已知這些品牌食品的所含熱量的百分比與美食家以百分制給出的對此種食品口味的評價分?jǐn)?shù)具有相關(guān)關(guān)系.試求出回歸方程(最后結(jié)果精確到);(2)某人只能接受食品所含熱量百分比為及以下的食品.現(xiàn)在他想從這些食品中隨機選取兩種購買,求他所選取的兩種食品至少有一種是美食家以百分制給出的對此種食品口味的評價分?jǐn)?shù)為分以上的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】,所以是奇函數(shù),關(guān)于原點對稱,是偶函數(shù),關(guān)于y軸對稱,時則都是增函數(shù),由對稱性可知時遞增,遞減,所以考點:函數(shù)奇偶性單調(diào)性2、B【解析】,∵數(shù)據(jù)的樣本中心點在線性回歸直線上,回歸方程中的為9.4,∴42=9.4×3.5+a,∴=9.1,∴線性回歸方程是y=9.4x+9.1,∴廣告費用為6萬元時銷售額為9.4×6+9.1=65.5考點:線性回歸方程3、C【解析】根據(jù)題意、空間向量基底的概念和共線的運算即可判斷命題①②③,根據(jù)空間向量的平行關(guān)系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構(gòu)成一個基底,則與共線或與其中有一個為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個向量,存在唯一的實數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對于任意非零空間向量,,若,則存在一個實數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯誤.故選:C4、B【解析】取x=4,得出命題p是假命題,由對數(shù)的運算得出命題q是假命題,再判斷選項.【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.5、D【解析】直接利用向量的坐標(biāo)運算求解即可【詳解】因為,所以,故選:D6、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C7、D【解析】根據(jù)題意,結(jié)合數(shù)列遞推公式,代入計算即可.【詳解】根據(jù)題意,由,得.故選:D.8、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,即可得答案.【詳解】由題可知,圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑為3,故選.9、D【解析】切點與圓心的連線垂直于切線,切線長轉(zhuǎn)化為直線上點與圓心連線和半徑的關(guān)系,利用點到直線的距離公式求出圓心與直線上點距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設(shè)為直線上任意一點,,切線長的最小值為:,故選:D.10、A【解析】求出通項,利用裂項相消法求數(shù)列的前n項和.【詳解】因為等差數(shù)列,,,所以,所以,所以數(shù)列的前項和為故B,C,D錯誤.故選:A.11、D【解析】計算出事件“t=12”的概率可判斷A;根據(jù)對立事件的概念,可判斷B;根據(jù)互斥事件的概念,可判斷C;計算出事件“t>8且mn<32”的概率可判斷D;【詳解】連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,則共有個基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點,則事件“t=12”的概率為,故A錯誤;事件“t是奇數(shù)”與“m=n”為互斥不對立事件,如事件m=3,n=5,故B錯誤;事件“t=2”與“t≠3”不是互斥事件,故C錯誤;事件“t>8且mn<32”有共9個基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D12、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設(shè)平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】聯(lián)立直線與雙曲線方程,可知二次項系數(shù)不為零、判別式大于零、兩根之和與兩根之積均大于零,據(jù)此構(gòu)造不等式組,解不等式組求得結(jié)果.詳解】將代入雙曲線方程整理可得:設(shè)直線與雙曲線右支交于兩點,解得:本題正確結(jié)果:【點睛】本題考查根據(jù)直線與雙曲線位置關(guān)系求解參數(shù)范圍的問題,屬于基礎(chǔ)題.14、【解析】將雙曲線化為標(biāo)準(zhǔn)方程后求解【詳解】,化簡得,其漸近線方程故答案為:15、6【解析】根據(jù)拋物線的定義把的長轉(zhuǎn)化為到準(zhǔn)線的距離為,進而數(shù)形結(jié)合求出最小值.【詳解】易知為拋物線的焦點,設(shè)到準(zhǔn)線的距離為,則,而的最小值為到準(zhǔn)線的距離,故的最小值為.故答案為:616、(1,1)【解析】存在性問題轉(zhuǎn)化為最大值,運用均值不等式,求出的最大值,轉(zhuǎn)化成解對數(shù)不等式,進而解出【詳解】解:∵,由于,則,∴,當(dāng)且僅當(dāng)時,即:時,∴有最大值,又存在正數(shù)使不等式成立,則,即,∴,即的取值范圍為:.故答案為:【點睛】本題考查均值不等式的應(yīng)用和對數(shù)不等式的解法,還涉及存在性問題,考查化簡計算能力三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】由拋物線的方程可得到焦點坐標(biāo),設(shè),寫出向量的坐標(biāo),由向量間的關(guān)系得到,將點代入物線即可得到軌跡方程.【詳解】由拋物線可得:設(shè)①在上,將①代入可得:,即.【點睛】求軌跡方程,一般是求誰設(shè)誰的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對于直線與曲線的綜合問題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進行運算也可以轉(zhuǎn)化為斜率來理解,然后借助韋達定理求解即可運算此類題計算一定要仔細.18、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,分別求出向量和,證明即可;(2)先求出和平面的法向量,然后利用公式求出,則直線與平面所成角的正弦值即為.【小問1詳解】證明:∵,,∴△≌△,∴,設(shè),在△中,由余弦定理得,即,則,即,,連接交于點,分別以,為軸、軸,過作軸,建立如圖空間直角坐標(biāo)系,則,,,,,,的中點,則,,∵,∴.【小問2詳解】由(1)可知,,,,設(shè)平面的法向量為,則,即,令,則,即,則,記直線與平面所成角為,.19、(1)條件選擇見解析,,,(2)【解析】(1)選①,推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的首項和公比,可求得,并可求得、;選②,推導(dǎo)出數(shù)列是等比數(shù)列,確定該數(shù)列的首項和公比,可求得,可求得,由此可得出、;(2)求得,,分為偶數(shù)、奇數(shù)兩種情況討論,結(jié)合并項求和法以及等比數(shù)列求和公式可求得.【小問1詳解】解:若選①,,且,故數(shù)列是首項為,公比為的等比數(shù)列,,故;若選②,,所以,,且,故數(shù)列是以為首項,以為公比的等比數(shù)列,所以,,故,所以,,故,.【小問2詳解】解:由(1)可知,則,所以,.當(dāng)為偶數(shù)時,;當(dāng)為奇數(shù)時,.綜上所述,.20、(1)(2)【解析】(1)由等比數(shù)列的性質(zhì)可得,結(jié)合條件求出,得出公比,從而得出通項公式.(2)由(1)可得,再求出的前項和,從而可得出答案.【小問1詳解】由題意可知,有,,得或∴或又,∴∴【小問2詳解】,∴∴,又單調(diào)遞增,所以滿足條件的的最大整數(shù)為21、(1)證明見解析(2)【解析】(1),連接,證明,再根據(jù)線面平行的判定定理即可得證;(2)說明平面,取的中點F,連接,以D為原點,分別以的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,利用向量法即可得出答案.【小問1詳解】證明:記,連接,由直棱柱的性質(zhì)可知四邊形是矩形,則E為的中點.因為D是的中點,所以,又平面平面,所以平面;【小問2詳解】因為底面是等邊三角形,D是的中點,所以,由直棱柱的性質(zhì)可知平面平面,平面平面,面,所以平面,取的中點F,連接,則兩兩垂直,故以D為原點,分別以的方向為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,設(shè),則,從而,設(shè)平面的法向量為,則,令x=2,得,同理平面的一個法向量為,則cosm由圖可知二面角的平面角為銳角,所以二面角B1-AC-C1的余弦值為.22、(1)(2)【解析】(1)首先求出、、,即可求出,從而求出回歸直線方程;(2)由表可知某人只能接受的食品共有種,評價為分以上的有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論