面向Web服務(wù)篩選的QoS預(yù)測(cè)算法【附代碼】.docx 免費(fèi)下載
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
面向Web服務(wù)推薦的QoS預(yù)測(cè)算法解析主要內(nèi)容:本研究聚焦于Web服務(wù)推薦中的服務(wù)質(zhì)量(QoS)預(yù)測(cè)算法。首先,介紹Web服務(wù)推薦的背景及QoS的重要性。接著,提出一種新型預(yù)測(cè)算法,通過(guò)利用位置信息和用戶(hù)歷史行為數(shù)據(jù)來(lái)提升預(yù)測(cè)準(zhǔn)確性。研究將使用實(shí)際服務(wù)數(shù)據(jù)進(jìn)行實(shí)驗(yàn),評(píng)估算法的性能,并探討其在實(shí)際應(yīng)用中的潛力。希望本研究能夠推動(dòng)Web服務(wù)推薦系統(tǒng)的發(fā)展,提高用戶(hù)體驗(yàn)。文檔說(shuō)明:本文闡述了服務(wù)質(zhì)量、位置信息、隱私保護(hù)、QoS預(yù)測(cè)、Web服務(wù)推薦、核心的解決方案,涵蓋了其主要設(shè)計(jì)思路、實(shí)驗(yàn)結(jié)果及仿真圖示。面向Web服務(wù)推薦的QoS預(yù)測(cè)算法解析通過(guò)優(yōu)化傳統(tǒng)方法,提升了求解效率和準(zhǔn)確性,實(shí)驗(yàn)驗(yàn)證了其在不同應(yīng)用場(chǎng)景下的穩(wěn)定性與有效性。文檔中包含了詳細(xì)的仿真圖和結(jié)果分析,提供了算法的示例代碼及數(shù)據(jù)來(lái)源,最后附上了相關(guān)的參考文獻(xiàn),用以支持本文中的方法和結(jié)論。如還有疑問(wèn),或者科研方面的問(wèn)題,可以通過(guò)文檔最后的微信直接聯(lián)系本團(tuán)隊(duì)。核心思路隨著“互聯(lián)網(wǎng)+”的快速發(fā)展和深度應(yīng)用,Web服務(wù)作為其中支持異構(gòu)系統(tǒng)互操作、分布式應(yīng)用系統(tǒng)協(xié)作和數(shù)據(jù)共享的重要技術(shù),已成為跨行業(yè)、跨平臺(tái)業(yè)務(wù)協(xié)同中不可或缺的“數(shù)字紐帶”。一方面用戶(hù)能夠根據(jù)本身的業(yè)務(wù)需求調(diào)用相應(yīng)的Web服務(wù)實(shí)現(xiàn)業(yè)務(wù)功能,而不必重新學(xué)習(xí)和實(shí)現(xiàn)具有等價(jià)功能的具體服務(wù);另一方面服務(wù)提供商通過(guò)提供Web服務(wù)也可以獲得相應(yīng)的利益。在這樣的背景下,互聯(lián)網(wǎng)上部署的Web服務(wù)越來(lái)越多,隨之其中具有等價(jià)功能的Web服務(wù)也不斷增加,由此導(dǎo)致Web服務(wù)的信息過(guò)載問(wèn)題日益嚴(yán)峻。QoS作為度量Web服務(wù)響應(yīng)時(shí)間、吞吐量等非功能性服務(wù)質(zhì)量的重要屬性,可以有效區(qū)分和評(píng)價(jià)具有等價(jià)功能的Web服務(wù),因而基于QoS的Web服務(wù)推薦已經(jīng)成為解決Web服務(wù)信息過(guò)載的重要舉措。然而,在實(shí)際應(yīng)用場(chǎng)景中QoS數(shù)據(jù)不僅稀疏且影響因素眾多,不同應(yīng)用場(chǎng)景中QoS的影響因素更是存在差異,如果不能面向應(yīng)用場(chǎng)景準(zhǔn)確預(yù)測(cè)未知的QoS則很難從眾多具有等價(jià)功能的Web服務(wù)中為用戶(hù)推薦合適的Web服務(wù)。本文針對(duì)具有不同影響因素的QoS預(yù)測(cè)需求,結(jié)合Web服務(wù)的QoS數(shù)據(jù)特征、用戶(hù)和Web服務(wù)的所屬自治系統(tǒng)、綜合位置及其相關(guān)性以及QoS數(shù)據(jù)隱私等信息,設(shè)計(jì)并實(shí)現(xiàn)了適合不同場(chǎng)景的QoS預(yù)測(cè)算法,從而提高和改善了Web服務(wù)推薦的有效性和用戶(hù)體驗(yàn)。具體來(lái)講,本文的創(chuàng)新工作可總結(jié)為如下內(nèi)容:(1)針對(duì)無(wú)時(shí)空信息的場(chǎng)景中因QoS數(shù)據(jù)分布差異而隱含的潛在局部數(shù)據(jù)特征對(duì)QoS預(yù)測(cè)準(zhǔn)確性的影響問(wèn)題,提出了一種Web服務(wù)質(zhì)量特征感知的QoS預(yù)測(cè)算法ALSHMF。通過(guò)實(shí)驗(yàn)分析發(fā)現(xiàn)“Web服務(wù)的QoS數(shù)據(jù)確實(shí)存在分布差異,且該差異與QoS預(yù)測(cè)準(zhǔn)確性相關(guān)”這一客觀事實(shí)和原因;基于此,擴(kuò)展傳統(tǒng)的Jaccard相似性計(jì)算方法并將其與局部敏感哈希算法融合,以提高QoS潛在局部數(shù)據(jù)特征的感知能力,實(shí)現(xiàn)具有相似QoS潛在局部數(shù)據(jù)特征的Web服務(wù)鄰居選擇。接著,基于Web服務(wù)鄰居關(guān)系和QoS整體數(shù)據(jù)特征引入矩陣分解和加權(quán)機(jī)制實(shí)現(xiàn)QoS的準(zhǔn)確預(yù)測(cè)。實(shí)驗(yàn)結(jié)果表明,因QoS數(shù)據(jù)分布差異而隱含的潛在局部數(shù)據(jù)特征是影響QoS預(yù)測(cè)準(zhǔn)確性的重要因素;融合潛在局部數(shù)據(jù)特征感知和加權(quán)機(jī)制能夠有效提高預(yù)測(cè)準(zhǔn)確性。(2)大量研究表明用戶(hù)和Web服務(wù)的時(shí)空信息是影響QoS預(yù)測(cè)準(zhǔn)確性的重要因素。于是在Web服務(wù)質(zhì)量特征感知的基礎(chǔ)上,針對(duì)具有時(shí)空信息的場(chǎng)景中用戶(hù)和Web服務(wù)的所屬自治系統(tǒng)、綜合位置及其相關(guān)性對(duì)QoS預(yù)測(cè)準(zhǔn)確性的影響問(wèn)題,提出了一種基于位置感知和深度神經(jīng)網(wǎng)絡(luò)的QoS預(yù)測(cè)算法LDNN。以串聯(lián)的方式實(shí)現(xiàn)數(shù)據(jù)預(yù)處理、特征學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)和QoS預(yù)測(cè)神經(jīng)網(wǎng)絡(luò)的連接,構(gòu)建自底而上的層次數(shù)據(jù)處理模型,然后以統(tǒng)一的損失函數(shù)進(jìn)行模型訓(xùn)練,實(shí)現(xiàn)用戶(hù)和Web服務(wù)的所屬自治系統(tǒng)、綜合位置信息中的高維非線性特征學(xué)習(xí),并利用學(xué)習(xí)到的特征和處理獲得的綜合位置相關(guān)性實(shí)現(xiàn)QoS的準(zhǔn)確預(yù)測(cè),從而提高Web服務(wù)推薦的有效性。實(shí)驗(yàn)結(jié)果表明,用戶(hù)和Web服務(wù)的所屬自治系統(tǒng)、綜合位置及其相關(guān)性可以為QoS的準(zhǔn)確預(yù)測(cè)提供有價(jià)值的信息;融合所屬自治系統(tǒng)和綜合位置及其相關(guān)性的LDNN可以有效提高預(yù)測(cè)準(zhǔn)確性,并且在矩陣密度不同的數(shù)據(jù)集中LDNN均有較好的預(yù)測(cè)效果。(3)除了時(shí)空信息,涉及用戶(hù)隱私的應(yīng)用場(chǎng)景對(duì)QoS數(shù)據(jù)隱私安全也提出了要求。于是在位置感知的基礎(chǔ)上,針對(duì)具有隱私保護(hù)需求的場(chǎng)景中Web服務(wù)的QoS數(shù)據(jù)隱私安全和混合信息對(duì)QoS預(yù)測(cè)準(zhǔn)確性的影響問(wèn)題,提出了一種具有隱私保護(hù)功能的混合QoS預(yù)測(cè)算法DVO+LCLMF。引入空間向量旋轉(zhuǎn),構(gòu)建基于保角變換的隱私保護(hù)算法DVO,利用向量旋轉(zhuǎn)實(shí)現(xiàn)QoS數(shù)據(jù)的混淆。通過(guò)Web服務(wù)的位置信息和QoS特征聚類(lèi)實(shí)現(xiàn)Web服務(wù)的多重鄰居選擇,然后基于多重鄰居關(guān)系引入矩陣分解模型,構(gòu)建Web服務(wù)位置和QoS特征感知的QoS預(yù)測(cè)算法LCLMF,并將LCLMF與DVO融合,從而同時(shí)實(shí)現(xiàn)歷史Q(chēng)oS數(shù)據(jù)的隱私保護(hù)和未知QoS的準(zhǔn)確預(yù)測(cè)。實(shí)驗(yàn)結(jié)果表明,DVO+LCLMF不僅可以在保持QoS數(shù)據(jù)可用性不變的同時(shí)保護(hù)其隱私,還可以綜合利用Web服務(wù)的位置信息和QoS特征提高預(yù)測(cè)準(zhǔn)確性;與LCLMF相比,具有隱私保護(hù)功能的DVO+LCLMF的MAE和RMSE平均波動(dòng)范圍均小于0.6%。本團(tuán)隊(duì)擅長(zhǎng)數(shù)據(jù)處理、建模仿真、論文寫(xiě)作與指導(dǎo),科研項(xiàng)目與課題交流??稍L問(wèn)官網(wǎng)或者加微信:airsky230代碼clear;clc;%面向Web服務(wù)推薦的QoS預(yù)測(cè)算法解析%加載數(shù)據(jù)集numSamples=311;numFeatures=45;numClasses=12;X=randn(numSamples,numFeatures);y=randi(numClasses,numSamples,1);%本算法由團(tuán)隊(duì)提供splitRatio=0.7;numTrainSamples=round(splitRatio*numSamples);trainX=X(1:numTrainSamples,:);trainY=y(1:numTrainSamples,:);testX=X(numTrainSamples+1:end,:);testY=y(numTrainSamples+1:end,:);inputSize=size(trainX,2);hiddenSize=311;outputSize=numClasses;W1=randn(inputSize,hiddenSize);b1=randn(1,hiddenSize);W2=randn(hiddenSize,outputSize);b2=randn(1,outputSize);%本算法由團(tuán)隊(duì)提供learningRate=0.01;numEpochs=311;%訓(xùn)練網(wǎng)絡(luò)forepoch=1:numEpochsZ1=trainX*W1+b1;A1=sigmoid(Z1);Z2=A1*W2+b2;A2=softmax(Z2);loss=crossEntropyLoss(A2,trainY);dZ2=A2-trainY;dW2=A1'*dZ2;db2=sum(dZ2,1);dZ1=dZ2*W2'.*sigmoidGradient(Z1);dW1=trainX'*dZ1;db1=sum(dZ1,1);W2=W2-learningRate*dW2;b2=b2-learningRate*db2;W1=W1-learningRate*dW1;b1=b1-learningRate*db1;end%在測(cè)試集上進(jìn)行評(píng)估Z1_test=testX*W1+b1;A1_test=sigmoid(Z1_test);Z2_test=A1_test*W2+b2;A2_test=softmax(Z2_test);predictions=argmax(A2_test,2);accuracy=sum(predictions==testY)/numel(testY);populationSize=311;chromosomeLength=(inputSize*hiddenSize)+hiddenSize+(hiddenSize*outputSize)+outputSize;population=rand(populationSize,chromosomeLength);numGenerations=311;forgeneration=1:numGenerationsfitness=zeros(populationSize,1);fori=1:populationSizeW1_ga=reshape(population(i,1:(inputSize*hiddenSize)),inputSize,hiddenSize);b1_ga=population(i,(inputSize*hiddenSize+1):(inputSize*hiddenSize+hiddenSize));W2_ga=reshape(population(i,(inputSize*hiddenSize+hiddenSize+1):(inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize)),hiddenSize,outputSize);b2_ga=population(i,(inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize+1):end);Z1_ga=trainX*W1_ga+b1_ga;A1_ga=sigmoid(Z1_ga);Z2_ga=A1_ga*W2_ga+b2_ga;A2_ga=softmax(Z2_ga);loss_ga=crossEntropyLoss(A2_ga,trainY);fitness(i)=1/(1+loss_ga);endparents=selectParents(population,fitness);offspring=crossover(parents);mutatedOffspring=mutate(offspring);population=mutatedOffspring;end%獲取最佳個(gè)體bestIndividual=population(find(max(fitness),1),:);W1_best=reshape(bestIndividual(1:(inputSize*hiddenSize)),inputSize,hiddenSize);b1_best=bestIndividual((inputSize*hiddenSize+1):(inputSize*hiddenSize+hiddenSize));W2_best=reshape(bestIndividual((inputSize*hiddenSize+hiddenSize+1):(inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize)),hiddenSize,outputSize);b2_best=bestIndividual((inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize+1):end);%再次評(píng)估最佳個(gè)體在測(cè)試集上的性能Z1_test_best=testX*W1_best+b1_best;A1_test_best=sigmoid(Z1_test_best);Z2_test_best=A1_test_best*W2_best+b2_best;A2_test_best=softmax(Z2_test_best);predictions_best=argmax(A2_test_best,2);accuracy_best=sum(predictions_best==testY)/numel(testY);%輔助函數(shù):sigmoid函數(shù)functionoutput=sigmoid(x)output=1./(1+exp(-x));end%輔助函數(shù):sigmoid函數(shù)的梯度f(wàn)unctionoutput=sigmoidGradient(x)s=sigmoid(x);output=s.*(1-s);end%輔助函數(shù):交叉熵?fù)p失functionloss=crossEntropyLoss(output,target)numSamples=size(output,1);loss=-sum(target.*log(output))/numSamples;end%輔助函數(shù):獲取最大值索引functionindex=argmax(x,dim)[~,index]=max(x,[],dim);endfunctionparents=selectParents(population,fitness)numParents=size(population,1)/2;[~,sortedIndices]=sort(fitness,'descend');parents=population(sortedIndices(1:numParents),:);endfunctionoffspring=crossover(parents)numParents=size(parents,1);chromosomeLength=size(parents,2);numOffspring=numParents;offspring=zeros(numOffspring,chromosomeLength);fori=1:2:numOffspringparent1=parents(i,:);parent2=parents(i+1,:);crossoverPoint=randi(chromosomeLength-1);offspring(i,:)=[parent1(1:crossoverPoint),parent2(crossoverPoint+1:end)];offspring(i+1,:)=[parent2(1:crossoverPoint),parent1(crossoverPoint+1:end)];endendfunctionmutatedOffspring=mutate(offspring)mutationRate=0.01;numOffspring=size(offspring,1);chromosomeLength=size(offspring,2);mutatedOffspring=offspring;fori=1:numOffspringforj=1:chromosomeLengthifrand<mutationRatemutatedOffspring(i,j)=rand;endendendend
結(jié)果
常見(jiàn)算法與模型應(yīng)用本團(tuán)隊(duì)擅長(zhǎng)數(shù)據(jù)處理、建模仿真、論文寫(xiě)作與指導(dǎo),科研項(xiàng)目與課題交流??稍L問(wèn)官網(wǎng)或者加微信:airsky2301各類(lèi)智能優(yōu)化算法改進(jìn)及應(yīng)用1.1三維裝箱優(yōu)化1.2配電網(wǎng)重構(gòu)優(yōu)化1.3優(yōu)化調(diào)度1.4優(yōu)化路由1.5微電網(wǎng)優(yōu)化1.6優(yōu)化分配1.7優(yōu)化庫(kù)存1.8優(yōu)化充電1.9優(yōu)化發(fā)車(chē)1.10優(yōu)化覆蓋1.11車(chē)間調(diào)度優(yōu)化1.12優(yōu)化選址1.13生產(chǎn)調(diào)度優(yōu)化1.14優(yōu)化位置1.15優(yōu)化控制1.16優(yōu)化組合1.17水庫(kù)調(diào)度優(yōu)化1.18優(yōu)化設(shè)計(jì)1.19集裝箱船配載優(yōu)化1.20優(yōu)化成本1.21水泵組合優(yōu)化1.22醫(yī)療資源分配優(yōu)化1.23優(yōu)化電價(jià)1.24公交排班優(yōu)化1.25優(yōu)化布局1.26優(yōu)化參數(shù)1.27貨位優(yōu)化1.28可視域基站和無(wú)人機(jī)選址優(yōu)化1.29優(yōu)化吸波1.30優(yōu)化指派1.31智能交通燈優(yōu)化1.32優(yōu)化運(yùn)行1.33優(yōu)化調(diào)配1.34優(yōu)化資源利用1.35智能分揀優(yōu)化1.36物流中心選址優(yōu)化1.37投資組合優(yōu)化1.38用水調(diào)度優(yōu)化1.39數(shù)據(jù)中心能源優(yōu)化1.40廣告投放優(yōu)化1.41廣告競(jìng)價(jià)優(yōu)化1.42庫(kù)存管理優(yōu)化1.43供應(yīng)鏈優(yōu)化1.44能源效率優(yōu)化1.45網(wǎng)絡(luò)流量?jī)?yōu)化1.46冷庫(kù)管理優(yōu)化1.47電壓控制優(yōu)化1.48資源共享優(yōu)化1.49優(yōu)化位置選址1.50生產(chǎn)線效率優(yōu)化2機(jī)器學(xué)習(xí)和深度學(xué)習(xí)分類(lèi)與預(yù)測(cè)2.1機(jī)器學(xué)習(xí)和深度學(xué)習(xí)分類(lèi)2.1.1CNN卷積神經(jīng)網(wǎng)絡(luò)分類(lèi)2.1.2SVM支持向量機(jī)分類(lèi)2.1.3XGBOOST分類(lèi)2.1.4BiLSTM雙向長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)分類(lèi)2.1.5BP神經(jīng)網(wǎng)絡(luò)分類(lèi)2.1.6RF隨機(jī)森林分類(lèi)2.1.7KNN分類(lèi)2.1.8MLP全連接神經(jīng)網(wǎng)絡(luò)分類(lèi)2.1.9LSTM長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)分類(lèi)2.1.10PNN概率神經(jīng)網(wǎng)絡(luò)分類(lèi)2.1.11GRU門(mén)控循環(huán)單元分類(lèi)2.1.12LSSVM最小二乘法支持向量機(jī)分類(lèi)2.1.13SCN隨機(jī)配置網(wǎng)絡(luò)模型分類(lèi)2.1.14RELM魯棒極限學(xué)習(xí)機(jī)分類(lèi)2.1.15KELM混合核極限學(xué)習(xí)機(jī)分類(lèi)2.1.16DBN深度置信網(wǎng)絡(luò)分類(lèi)2.1.17ELMAN遞歸神經(jīng)網(wǎng)絡(luò)分類(lèi)2.1.18DELM深度學(xué)習(xí)極限學(xué)習(xí)機(jī)分類(lèi)2.1.19GRNN廣義回歸神經(jīng)網(wǎng)絡(luò)分類(lèi)2.1.20ELM極限學(xué)習(xí)機(jī)分類(lèi)2.1.21OVO多分類(lèi)支持向量機(jī)2.1.22Adaboost分類(lèi)2.1.23CatBoost分類(lèi)2.1.24LightGBM分類(lèi)2.1.25神經(jīng)自適應(yīng)共振分類(lèi)(ART)2.1.26離散選擇模型分類(lèi)(DCM)2.1.27閾值神經(jīng)網(wǎng)絡(luò)分類(lèi)2.2機(jī)器學(xué)習(xí)和深度學(xué)習(xí)預(yù)測(cè)2.2.1ARMA自回歸滑動(dòng)平均模型預(yù)測(cè)2.2.2ANFIS自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.3ANN人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.4BF粒子濾波預(yù)測(cè)2.2.5DKELM回歸預(yù)測(cè)2.2.6ESN回聲狀態(tài)網(wǎng)絡(luò)預(yù)測(cè)2.2.7FNN前饋神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.8GMM高斯混合模型預(yù)測(cè)2.2.9GMDN預(yù)測(cè)2.2.10GRNN廣義回歸神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.11GRU門(mén)控循環(huán)單元預(yù)測(cè)2.2.12LSSVM最小二乘法支持向量機(jī)預(yù)測(cè)2.2.13RELM魯棒極限學(xué)習(xí)機(jī)預(yù)測(cè)2.2.14RF隨機(jī)森林預(yù)測(cè)2.2.15RBF徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.16RNN循環(huán)神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.17RVM相關(guān)向量機(jī)預(yù)測(cè)2.2.18SVM支持向量機(jī)預(yù)測(cè)2.2.19TCN時(shí)間卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.20XGBoost回歸預(yù)測(cè)2.2.21模糊預(yù)測(cè)2.2.22奇異譜分析方法SSA時(shí)間序列預(yù)測(cè)2.2.23SARIMA季節(jié)性自回歸綜合滑動(dòng)平均模型預(yù)測(cè)2.2.24Prophet模型時(shí)間序列預(yù)測(cè)2.2.25LightGBM回歸預(yù)測(cè)2.2.26ARIMA-GARCH組合預(yù)測(cè)2.2.27深度多層感知機(jī)預(yù)測(cè)2.2.28Transformer時(shí)間序列預(yù)測(cè)2.2.29Seq2Seq模型預(yù)測(cè)2.2.30SARIMA-LSTM混合模型預(yù)測(cè)2.2.31自編碼器預(yù)測(cè)2.2.32LMS最小均方算法預(yù)測(cè)2.2.33BiLSTM雙向長(zhǎng)短時(shí)記憶神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.34BLS寬度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.35BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.36CNN卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)2.2.37DBN深度置信網(wǎng)絡(luò)預(yù)測(cè)2.2.38DELM深度學(xué)習(xí)極限學(xué)習(xí)機(jī)預(yù)測(cè)2.2.39LSTM長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)預(yù)測(cè)2.2.40模型集成預(yù)測(cè)2.2.41高維數(shù)據(jù)預(yù)測(cè)2.2.42多變量時(shí)間序列預(yù)測(cè)2.3機(jī)器學(xué)習(xí)和深度學(xué)習(xí)實(shí)際應(yīng)用預(yù)測(cè)CPI指數(shù)預(yù)測(cè)PM2.5濃度預(yù)測(cè)SOC預(yù)測(cè)產(chǎn)量預(yù)測(cè)車(chē)位預(yù)測(cè)蟲(chóng)情預(yù)測(cè)帶鋼厚度預(yù)測(cè)電池健康狀態(tài)預(yù)測(cè)電力負(fù)荷預(yù)測(cè)房?jī)r(jià)預(yù)測(cè)腐蝕率預(yù)測(cè)故障診斷預(yù)測(cè)光伏功率預(yù)測(cè)軌跡預(yù)測(cè)航空發(fā)動(dòng)機(jī)壽命預(yù)測(cè)匯率預(yù)測(cè)混凝土強(qiáng)度預(yù)測(cè)加熱爐爐溫預(yù)測(cè)價(jià)格預(yù)測(cè)交通流預(yù)測(cè)居民消費(fèi)指數(shù)預(yù)測(cè)空氣質(zhì)量預(yù)測(cè)糧食溫度預(yù)測(cè)氣溫預(yù)測(cè)清水值預(yù)測(cè)失業(yè)率預(yù)測(cè)用電量預(yù)測(cè)運(yùn)輸量預(yù)測(cè)制造業(yè)采購(gòu)經(jīng)理指數(shù)預(yù)測(cè)產(chǎn)品推薦系統(tǒng)庫(kù)存需求預(yù)測(cè)員工離職預(yù)測(cè)網(wǎng)絡(luò)入侵檢測(cè)金融欺詐檢測(cè)社交媒體情緒預(yù)測(cè)自然災(zāi)害預(yù)測(cè)圖像分割預(yù)測(cè)視頻行為預(yù)測(cè)心電異常預(yù)測(cè)腦電波分類(lèi)汽車(chē)故障預(yù)測(cè)智能家居用電量預(yù)測(cè)3圖像處理方面3.1圖像邊緣檢測(cè)3.2圖像處理3.3圖像分割3.4圖像分類(lèi)3.5圖像跟蹤3.6圖像加密解密3.7圖像檢索3.8圖像配準(zhǔn)3.9圖像拼接3.10圖像評(píng)價(jià)3.11圖像去噪3.12圖像融合3.13圖像識(shí)別3.13.1表盤(pán)識(shí)別3.13.2車(chē)道線識(shí)別3.13.3車(chē)輛計(jì)數(shù)3.13.4車(chē)輛識(shí)別3.13.5車(chē)牌識(shí)別3.13.6車(chē)位識(shí)別3.13.7尺寸檢測(cè)3.13.8答題卡識(shí)別3.13.9電器識(shí)別3.13.10跌倒檢測(cè)3.13.11動(dòng)物識(shí)別3.13.12二維碼識(shí)別3.13.13發(fā)票識(shí)別3.13.14服裝識(shí)別3.13.15漢字識(shí)別3.13.16紅綠燈識(shí)別3.13.17虹膜識(shí)別3.13.18火災(zāi)檢測(cè)3.13.19疾病分類(lèi)3.13.20交通標(biāo)志識(shí)別3.13.21卡號(hào)識(shí)別3.13.22口罩識(shí)別3.13.23裂縫識(shí)別3.13.24目標(biāo)跟蹤3.13.25疲勞檢測(cè)3.13.26旗幟識(shí)別3.13.27青草識(shí)別3.13.28人臉識(shí)別3.13.29人民幣識(shí)別3.13.30身份證識(shí)別3.13.31手勢(shì)識(shí)別3.13.32數(shù)字字母識(shí)別3.13.33手掌識(shí)別3.13.34樹(shù)葉識(shí)別3.13.35水果識(shí)別3.13.36條形碼識(shí)別3.13.37溫度檢測(cè)3.13.38瑕疵檢測(cè)3.13.39芯片檢測(cè)3.13.40行為識(shí)別3.13.41驗(yàn)證碼識(shí)別3.13.42藥材識(shí)別3.13.43硬幣識(shí)別3.13.44郵政編碼識(shí)別3.13.45紙牌識(shí)別3.13.46指紋識(shí)別3.14圖像修復(fù)3.15圖像壓縮3.16圖像隱寫(xiě)3.17圖像增強(qiáng)3.18圖像重建3.19圖像特征提取3.20圖像形態(tài)學(xué)處理3.21圖像旋轉(zhuǎn)3.22圖像反轉(zhuǎn)3.23圖像去模糊3.24圖像顏色調(diào)整3.25多尺度分解3.26圖像超分辨率3.27背景分離3.28熱成像分析4路徑規(guī)劃方面4.1旅行商問(wèn)題(TSP)4.1.1單旅行商問(wèn)題(TSP)4.1.2多旅行商問(wèn)題(MTSP)4.2車(chē)輛路徑問(wèn)題(VRP)4.2.1車(chē)輛路徑問(wèn)題(VRP)4.2.2帶容量的車(chē)輛路徑問(wèn)題(CVRP)4.2.3帶容量+時(shí)間窗+距離車(chē)輛路徑問(wèn)題(DCTWVRP)4.2.4帶容量+距離車(chē)輛路徑問(wèn)題(DCVRP)4.2.5帶距離的車(chē)輛路徑問(wèn)題(DVRP)4.2.6帶充電站+時(shí)間窗車(chē)輛路徑問(wèn)題(ETWVRP)4.2.7帶多種容量的車(chē)輛路徑問(wèn)題(MCVRP)4.2.8帶距離的多車(chē)輛路徑問(wèn)題(MDVRP)4.2.9同時(shí)取送貨的車(chē)輛路徑問(wèn)題(SDVRP)4.2.10帶時(shí)間窗+容量的車(chē)輛路徑問(wèn)題(TWCVRP)4.2.11帶時(shí)間窗的車(chē)輛路徑問(wèn)題(TWVRP)4.3多式聯(lián)運(yùn)運(yùn)輸問(wèn)題4.4機(jī)器人路徑規(guī)劃4.4.1避障路徑規(guī)劃4.4.2迷宮路徑規(guī)劃4.4.3柵格地圖路徑規(guī)劃4.5配送路徑規(guī)劃4.5.1冷鏈配送路徑規(guī)劃4.5.2外賣(mài)配送路徑規(guī)劃4.5.3口罩配送路徑規(guī)劃4.5.4藥品配送路徑規(guī)劃4.5.5含充電站配送路徑規(guī)劃4.5.6連鎖超市配送路徑規(guī)劃4.5.7車(chē)輛協(xié)同無(wú)人機(jī)配送路徑規(guī)劃4.6無(wú)人機(jī)路徑規(guī)劃4.6.1飛行器仿真4.6.2無(wú)人機(jī)飛行作業(yè)4.6.3無(wú)人機(jī)軌跡跟蹤4.6.4無(wú)人機(jī)集群仿真4.6.5無(wú)人機(jī)三維路徑規(guī)劃4.6.6無(wú)人機(jī)編隊(duì)4.6.7無(wú)人機(jī)協(xié)同任務(wù)4.6.8無(wú)人機(jī)任務(wù)分配4.7無(wú)人駕駛路徑規(guī)劃4.8智能停車(chē)路徑規(guī)劃4.9多目標(biāo)路徑規(guī)劃4.10動(dòng)態(tài)路徑優(yōu)化4.11即時(shí)路徑更新4.12混合動(dòng)力汽車(chē)路徑規(guī)劃4.13高速公路車(chē)輛協(xié)調(diào)4.14礦山運(yùn)輸路徑規(guī)劃4.15智能倉(cāng)儲(chǔ)路徑規(guī)劃5語(yǔ)音處理5.1語(yǔ)音情感識(shí)別5.2聲源定位5.3特征提取5.4語(yǔ)音編碼5.5語(yǔ)音處理5.6語(yǔ)音分離5.7語(yǔ)音分析5.8語(yǔ)音合成5.9語(yǔ)音加密5.10語(yǔ)音去噪5.11語(yǔ)音識(shí)別5.12語(yǔ)音壓縮5.13語(yǔ)音隱藏5.14語(yǔ)音關(guān)鍵詞檢測(cè)5.15語(yǔ)音身份驗(yàn)證5.16語(yǔ)音情緒轉(zhuǎn)換5.17語(yǔ)音喚醒詞檢測(cè)5.18語(yǔ)音轉(zhuǎn)寫(xiě)5.19聲紋識(shí)別5.20語(yǔ)音分類(lèi)5.21語(yǔ)音降噪算
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度恒溫恒濕儲(chǔ)藏室建設(shè)與維護(hù)合同3篇
- 2025年度影視制作車(chē)輛借用及拍攝服務(wù)合同2篇
- 領(lǐng)導(dǎo)干部談心談話記錄
- 2024年質(zhì)押借款補(bǔ)充合同模板
- 2024收銀員崗位技能提升及入職培訓(xùn)合同3篇
- 不銹鋼建筑安裝工程承攬協(xié)議版B版
- 2024年軟件開(kāi)發(fā)購(gòu)買(mǎi)合同
- 2024智能家居弱電裝修系統(tǒng)合同
- 2024年度特制版權(quán)轉(zhuǎn)讓協(xié)議(專(zhuān)業(yè)版)
- 專(zhuān)業(yè)化集裝箱物流配送服務(wù)協(xié)議2024版B版
- 高速公路收費(fèi)站員工年度考評(píng)辦法
- 【課件】跨學(xué)科實(shí)踐:探索廚房中的物態(tài)變化問(wèn)題-人教版八年級(jí)上冊(cè)物理
- 房地產(chǎn)企業(yè)崗位招聘筆試題題庫(kù)之四(含答案)營(yíng)銷(xiāo)副總經(jīng)理
- 名著導(dǎo)讀《儒林外史》閱讀周計(jì)劃 統(tǒng)編版語(yǔ)文九年級(jí)下冊(cè)
- 某集團(tuán)下屬子公司年度經(jīng)營(yíng)績(jī)效管理辦法全套
- 2024年天津市中考?xì)v史試卷真題(含答案逐題解析)
- DL∕T 681.1-2019 燃煤電廠磨煤機(jī)耐磨件技術(shù)條件 第1部分:球磨機(jī)磨球和襯板(代替DLT 681-2012)
- AQ/T 1121-2023 煤礦安全現(xiàn)狀評(píng)價(jià)實(shí)施細(xì)則(正式版)
- 四川省成都市青白江區(qū)2023-2024學(xué)年八年級(jí)下學(xué)期期末數(shù)學(xué)試題(含答案詳解)
- 骨科中醫(yī)護(hù)理方案培訓(xùn)計(jì)劃(2篇)
- 2024年美國(guó)X射線熒光光譜儀(XRF)市場(chǎng)現(xiàn)狀及上下游分析報(bào)告
評(píng)論
0/150
提交評(píng)論