版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省唐山市樂亭一中2025屆高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列各組函數(shù)中,表示同一個函數(shù)的是()A.與B.與C.與D.與2.地震以里氏震級來度量地震的強度,若設為地震時所散發(fā)出來的相對能量,則里氏震級可定義為.在2021年3月下旬,地區(qū)發(fā)生里氏級地震,地區(qū)發(fā)生里氏7.3級地震,則地區(qū)地震所散發(fā)出來的相對能量是地區(qū)地震所散發(fā)出來的相對能量的()倍.A.7 B.C. D.3.復利是一種計算利息的方法.即把前一期的利息和本金加在一起算作本金,再計算下一期的利息.某同學有壓歲錢1000元,存入銀行,年利率為2.25%;若放入微信零錢通或者支付寶的余額寶,年利率可達4.01%.如果將這1000元選擇合適方式存滿5年,可以多獲利息()元.(參考數(shù)據(jù):)A.176 B.100C.77 D.884.設,則A. B.C. D.5.下列指數(shù)式與對數(shù)式互化不正確的一組是()A.與 B.與C.與 D.與6.某地區(qū)經過一年的新農村建設,農村的經濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農村的經濟收入變化情況,統(tǒng)計了該地區(qū)新農村建設前后農村的經濟收入構成比例.得到如下餅圖:則下面結論中不正確的是A.新農村建設后,種植收入減少B.新農村建設后,其他收入增加了一倍以上C.新農村建設后,養(yǎng)殖收入增加了一倍D.新農村建設后,養(yǎng)殖收入與第三產業(yè)收入的總和超過了經濟收入的一半7.已知集合,,則()A. B.C. D.8.已知函數(shù),若實數(shù),則函數(shù)的零點個數(shù)為()A.0 B.1C.2 D.39.若過,兩點的直線的傾斜角為,則y等于()A. B.C.1 D.510.已知函數(shù)(ω>0),對任意x∈R,都有≤,并且在區(qū)間上不單調,則ω的最小值是()A.6 B.7C.8 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.已知冪函數(shù)經過點,則______12.若函數(shù)在區(qū)間[2,3]上的最大值比最小值大,則__________.13.函數(shù)的值域為___________.14.化簡:=____________15.已知,且,則______.16.已知函數(shù)若函數(shù)有三個不同的零點,且,則的取值范圍是____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求的最小正周期、最大值、最小值;(2)求函數(shù)的單調區(qū)間;18.計算:(1);(2)19.某地區(qū)今年1月、2月、3月患某種傳染病的人數(shù)分別為52、54、58;為了預測以后各月的患病人數(shù),根據(jù)今年1月、2月、3月的數(shù)據(jù),甲選擇了模型fx=ax2+bx+c,乙選擇了模型y=p?qx+r,其中y為患病人數(shù),x為月份數(shù),a,b,(1)如果4月、5月、6月份的患病人數(shù)分別為66、82、115,你認為誰選擇的模型較好?請說明理由;(2)至少要經過多少個月患該傳染病的人數(shù)將會超過2000人?試用你認為比較好的模型解決上述問題.(參考數(shù)據(jù):210=1024,20.近來,國內多個城市紛紛加碼布局“夜經濟”,以滿足不同層次的多元消費,并拉動就業(yè)、帶動創(chuàng)業(yè),進而提升區(qū)域經濟發(fā)展活力.某夜市的一位工藝品售賣者,通過對每天銷售情況的調查發(fā)現(xiàn):該工藝品在過去的一個月內(以30天計),每件的銷售價格(單位:元)與時間x(單位:天)的函數(shù)關系近似滿足,日銷售量(單位:件)與時間x(單位:天)的部分數(shù)據(jù)如下表所示:x10152025305055605550(1)給出以下四個函數(shù)模型:①;②;③;④請你根據(jù)上表中的數(shù)據(jù),從中選擇你認為最合適的一種函數(shù)模型來描述日銷售量與時間x的變化關系,并求出該函數(shù)的解析式;(2)設該工藝品的日銷售收入為(單位:元),求的最小值21.已知函數(shù)f(x)=2sin2(x+)-2cos(x-)-5a+2(1)設t=sinx+cosx,將函數(shù)f(x)表示為關于t的函數(shù)g(t),求g(t)的解析式;(2)對任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)兩個函數(shù)的定義域相同且對應關系也相同,逐項判斷即可【詳解】由于函數(shù)的定義域為,函數(shù)的定義域為,所以與不是同一個函數(shù),故A錯誤;由于的定義域為,函數(shù)且定義域為,所以與是同一函數(shù),故B正確;在函數(shù)中,,解得或,所以函數(shù)的定義域為,在函數(shù)中,,解得,所以的定義域為,所以與不是同一函數(shù),故C錯誤;由于函數(shù)的定義域為,函數(shù)定義域為為,所以與不是同一函數(shù),故D錯誤;故選:B.2、C【解析】把兩個震級代入后,兩式作差即可解決此題【詳解】設里氏3.1級地震所散發(fā)出來的能量為,里氏7.3級地震所散發(fā)出來的能量為,則①,②②①得:,解得:故選:3、B【解析】由題意,某同學有壓歲錢1000元,分別計算存入銀行和放入微信零錢通或者支付寶的余額寶所得利息,即可得到答案【詳解】由題意,某同學有壓歲錢1000元,存入銀行,年利率為2.25%,若在銀行存放5年,可得金額為元,即利息為元,若放入微信零錢通或者支付寶的余額寶時,利率可達4.01%,若存放5年,可得金額為元,即利息為元,所以將這1000元選擇合適方式存滿5年,可以多獲利息元,故選B【點睛】本題主要考查了等比數(shù)列的實際應用問題,其中解答中認真審題,準確理解題意,合理利用等比數(shù)列的通項公式求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題4、B【解析】函數(shù)在上單調遞減,所以,函數(shù)在上單調遞減,所以,所以,答案為B考點:比較大小5、C【解析】根據(jù)指數(shù)式與對數(shù)式的互化關系逐一判斷即可.【詳解】,故正確;,故正確;,,故不正確;,故正確故選:C【點睛】本題主要考查了指數(shù)式與對數(shù)式的互化,屬于基礎題.6、A【解析】首先設出新農村建設前的經濟收入為M,根據(jù)題意,得到新農村建設后的經濟收入為2M,之后從圖中各項收入所占的比例,得到其對應的收入是多少,從而可以比較其大小,并且得到其相應的關系,從而得出正確的選項.【詳解】設新農村建設前的收入為M,而新農村建設后的收入為2M,則新農村建設前種植收入為0.6M,而新農村建設后的種植收入為0.74M,所以種植收入增加了,所以A項不正確;新農村建設前其他收入我0.04M,新農村建設后其他收入為0.1M,故增加了一倍以上,所以B項正確;新農村建設前,養(yǎng)殖收入為0.3M,新農村建設后為0.6M,所以增加了一倍,所以C項正確;新農村建設后,養(yǎng)殖收入與第三產業(yè)收入的綜合占經濟收入的,所以超過了經濟收入的一半,所以D正確;故選A.點睛:該題考查的是有關新農村建設前后的經濟收入的構成比例的餅形圖,要會從圖中讀出相應的信息即可得結果.7、A【解析】由已知得,因為,所以,故選A8、D【解析】根據(jù)分段函數(shù)做出函數(shù)的圖象,運用數(shù)形結合的思想可求出函數(shù)的零點的個數(shù),得出選項.【詳解】令,得,根據(jù)分段函數(shù)的解析式,做出函數(shù)的圖象,如下圖所示,因為,由圖象可得出函數(shù)的零點個數(shù)為3個,故選:D.【點睛】本題考查函數(shù)零點,考查學生分析解決問題的能力,關鍵在于做出函數(shù)的圖象,運用數(shù)形結合的思想得出零點個數(shù),屬于中檔題.多選題9、B【解析】根據(jù)斜率的定義和坐標表達式即可求得結果.【詳解】,.【點睛】本題考查斜率的定義和坐標表達式,注意認真計算,屬基礎題.10、B【解析】根據(jù),得為函數(shù)的最大值,建立方程求出的值,利用函數(shù)的單調性進行判斷即可【詳解】解:對任意,都有,為函數(shù)的最大值,則,,得,,在區(qū)間,上不單調,,即,即,得,則當時,最小.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、##0.5【解析】將點代入函數(shù)解得,再計算得到答案.【詳解】,故,.故答案為:12、【解析】函數(shù)在上單調遞增,∴解得:故答案為13、【解析】由函數(shù)定義域求出的取值范圍,再由的單調性即可得解.【詳解】函數(shù)的定義域為R,而,當且僅當x=0時取“=”,又在R上單調遞減,于是有,所以函數(shù)的值域為.故答案為:14、【解析】利用三角函數(shù)的平方關系式,化簡求解即可【詳解】===又,所以,所以=,故填:【點睛】本題考查同角三角函數(shù)的基本關系式的應用,三角函數(shù)的化簡求值,考查計算能力15、##【解析】化簡已知條件,求得,通過兩邊平方的方法求得,進而求得.【詳解】依題意,①,,,化簡得①,則,由,得,,.故答案為:16、;【解析】作圖可知:點睛:利用函數(shù)零點情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數(shù)后轉化為函數(shù)的值域(最值)問題求解.(3)轉化為兩熟悉的函數(shù)圖象的上、下關系問題,從而構建不等式求解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),最大值1,最小值-1;(2)在上單調遞增;上單調遞減;【解析】(1)利用兩角差余弦公式、兩角和正弦公式化簡函數(shù)式,進而求的最小正周期、最大值、最小值;(2)利用的性質求函數(shù)的單調區(qū)間即可.【詳解】(1),∴,且最大值、最小值分別為1,-1;(2)由題意,當時,單調遞增,∴,,單調遞增;當時,單調遞減,∴,,單調遞減;綜上,當,單調遞增;,單調遞減;【點睛】關鍵點點睛:應用兩角和差公式化簡三角函數(shù)式并求最小正周期、最值;根據(jù)性質確定三角函數(shù)的單調區(qū)間.18、(1);(2).【解析】(1)根據(jù)指數(shù)冪的運算法則,以及根式與指數(shù)冪的互化公式,直接計算,即可得出結果;(2)根據(jù)對數(shù)的運算法則,直接計算,即可得出結果.【詳解】(1)原式=(2)原式==19、(1)應將y=2(2)至少經過11個月患該傳染病的人數(shù)將會超過2000人【解析】(1)分別將x=1,2,3代入兩個解析式,求得a,b,c,p,q,r,求得解析式,并分別檢驗x=4,5,6時函數(shù)值與真實值的誤差,分析即可得答案.(2)令2x+50>2000,可求得【小問1詳解】由題意,把x=1,2,3代入fx得:解得a=1,b=-1,c=52,所以fx所以f4=42-4+52=64則f4-66=2,f把x=1,2,3代入y=gx=p?解得p=1,q=2,r=50,所以gx所以g4=24+50=66則g4-66=0,因為g4,g5,g6【小問2詳解】令2x+50>2000由于210=1024<1950<2048=2所以至少經過11個月患該傳染病的人數(shù)將會超過2000人20、(1)選擇模型②:,;(2)441.【解析】(1)根據(jù)表格數(shù)據(jù)的變化趨勢選擇函數(shù)模型,再將數(shù)據(jù)代入解析式求參數(shù)值,即可得解析式.(2)由題設及(1)所得解析式求的解析式,再由分段函數(shù)的性質,結合分式型函數(shù)最值的求法求的最小值【小問1詳解】由表格數(shù)據(jù)知,當時間x變換時,先增后減,而①;③;④都是單調函數(shù),所以選擇模型②:,由,可得,解得,由,解得,,所以日銷售量與時間x的變化的關系式為【小問2詳解】由(2)知:,所以,即,當,時,由基本不等式,可得,當且僅當時,即時等號成立,當,時,為減函數(shù),所以函數(shù)的最小值為,綜上,當時,函數(shù)取得最小值44121、(1),;(2)【解析】:(1)首先由兩角和的正弦公式可得,進
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度甲乙雙方云計算服務合同2篇
- 二零二五年度合同標的金額調整補充協(xié)議3篇
- 2025年度版權許可使用合同(含影視音樂)2篇
- 二零二五年度在線教育平臺合作協(xié)議認證3篇
- 二零二五年度建筑公司分包合同5篇
- 二零二五年度教育培訓項目合作與授權合同3篇
- 羽毛球發(fā)球課程設計
- 二零二五年度房地產分銷與綠色能源項目合作協(xié)議3篇
- 二零二五年度影視制作場地租賃協(xié)議書2篇
- 2025年度新能源汽車電池技術研發(fā)與轉讓合同
- Exchange配置與規(guī)劃方案專項方案V
- 資本市場與財務管理
- 三年級上冊脫式計算練習200題及答案
- 新生兒腭裂護理查房課件
- 二年級下冊科學課程綱要
- 前交叉韌帶重建術后康復訓練
- 河南近10年中考真題數(shù)學含答案(2023-2014)
- 八年級上學期期末家長會課件
- 2024年大學試題(宗教學)-佛教文化歷年考試高頻考點試題附帶答案
- 軟件項目服務外包工作管理辦法
- 紅薯系列產品項目規(guī)劃設計方案
評論
0/150
提交評論