江西省臨川實(shí)驗(yàn)學(xué)校2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
江西省臨川實(shí)驗(yàn)學(xué)校2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
江西省臨川實(shí)驗(yàn)學(xué)校2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
江西省臨川實(shí)驗(yàn)學(xué)校2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
江西省臨川實(shí)驗(yàn)學(xué)校2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江西省臨川實(shí)驗(yàn)學(xué)校2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列問題中是古典概型的是A.種下一粒楊樹種子,求其能長成大樹的概率B.擲一顆質(zhì)地不均勻的骰子,求出現(xiàn)1點(diǎn)的概率C.在區(qū)間[1,4]上任取一數(shù),求這個(gè)數(shù)大于1.5概率D.同時(shí)擲兩枚質(zhì)地均勻的骰子,求向上的點(diǎn)數(shù)之和是5的概率2.是雙曲線:上一點(diǎn),已知,則的值()A. B.C.或 D.3.已知是橢圓上的一點(diǎn),則點(diǎn)到兩焦點(diǎn)的距離之和是()A.6 B.9C.14 D.104.已知數(shù)列滿足,且,那()A.19 B.31C.52 D.1045.均勻壓縮是物理學(xué)一種常見現(xiàn)象.在平面直角坐標(biāo)系中曲線均勻壓縮,可用曲線上點(diǎn)的坐標(biāo)來描述.設(shè)曲線上任意一點(diǎn),若將曲線縱向均勻壓縮至原來的一半,則點(diǎn)的對應(yīng)點(diǎn)為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點(diǎn)的對應(yīng)點(diǎn)為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.6.如圖,在棱長為的正方體中,為線段的中點(diǎn),為線段的中點(diǎn),則直線到直線的距離為()A. B.C. D.7.正數(shù)a,b滿足,若不等式對任意實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是A. B.C. D.8.已知半徑為2的圓經(jīng)過點(diǎn)(5,12),則其圓心到原點(diǎn)的距離的最小值為()A.10 B.11C.12 D.139.已知雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)A的坐標(biāo)為,點(diǎn)P是雙曲線在第二象限的部分上一點(diǎn),且,點(diǎn)Q是線段的中點(diǎn),且,Q關(guān)于直線PA對稱,則雙曲線的離心率為()A.3 B.2C. D.10.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺11.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),為坐標(biāo)原點(diǎn),且,則()A.4 B.2C. D.12.已知圓,圓C2:x2+y2-x-4y+7=0,則“a=1”是“兩圓內(nèi)切”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知兩點(diǎn)和則以為直徑的圓的標(biāo)準(zhǔn)方程是__________.14.已知拋物線的焦點(diǎn)F為,過點(diǎn)F的直線交該拋物線的準(zhǔn)線于點(diǎn)A,與該拋物線的一個(gè)交點(diǎn)為B,且,則______15.若不同的平面的一個(gè)法向量分別為,,則與的位置關(guān)系為___________.16.圓錐的軸截面是邊長為2的等邊三角形,為底面中心,為的中點(diǎn),動(dòng)點(diǎn)在圓錐底面內(nèi)(包括圓周).若,則點(diǎn)形成的軌跡的長度為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程是(為參數(shù)(1)求直線和曲線的普通方程;(2)直線與軸交于點(diǎn),與曲線交于,兩點(diǎn),求18.(12分)四棱錐中,平面,四邊形為平行四邊形,(1)若為中點(diǎn),求證平面;(2)若,求面與面的夾角的余弦值.19.(12分)已知拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),焦點(diǎn)在軸的正半軸上,是拋物線上的點(diǎn),點(diǎn)到焦點(diǎn)的距離為1,且到軸的距離是(1)求拋物線的標(biāo)準(zhǔn)方程;(2)假設(shè)直線通過點(diǎn),與拋物線相交于,兩點(diǎn),且,求直線的方程20.(12分)如圖,已知四棱臺的上、下底面分別是邊長為2和4的正方形,,且底面,點(diǎn)分別在棱、上·(1)若P是的中點(diǎn),證明:;(2)若平面,二面角的余弦值為,求四面體的體積21.(12分)已知圓.(1)過點(diǎn)作圓的切線,求切線的方程;(2)若直線過點(diǎn)且被圓截得的弦長為2,求直線的方程.22.(10分)已知圓O:與圓C:(1)在①,②這兩個(gè)條件中任選一個(gè),填在下面的橫線上,并解答若______,判斷這兩個(gè)圓位置關(guān)系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個(gè)條件分別作答,按第一個(gè)作答計(jì)分

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】A、B兩項(xiàng)中的基本事件的發(fā)生不是等可能的;C項(xiàng)中基本事件的個(gè)數(shù)是無限多個(gè);D項(xiàng)中基本事件的發(fā)生是等可能的,且是有限個(gè).故選D【考點(diǎn)】古典概型的判斷2、B【解析】根據(jù)雙曲線定義,結(jié)合雙曲線上的點(diǎn)到焦點(diǎn)的距離的取值范圍,即可求解.【詳解】雙曲線方程為:,是雙曲線:上一點(diǎn),,,或,又,.故選:B3、A【解析】根據(jù)橢圓的定義,可求得答案.【詳解】由可知:,由是橢圓上的一點(diǎn),則點(diǎn)到兩焦點(diǎn)的距離之和為,故選:A4、D【解析】根據(jù)等比數(shù)列的定義,結(jié)合等比數(shù)列的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)椋杂?,因此?shù)列是公比的等比數(shù)列,因?yàn)椋?,故選:D5、C【解析】設(shè)單位圓上一點(diǎn)為,經(jīng)過題設(shè)變換后坐標(biāo)為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點(diǎn)坐標(biāo)為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應(yīng)坐標(biāo)為,∴,則,故中,可得:.故選:C.6、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉(zhuǎn)化成點(diǎn)到直線的距離,結(jié)合余弦定理即同角三角函數(shù)基本關(guān)系,求得,因此可得,進(jìn)而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因?yàn)?,分別為,的中點(diǎn),因?yàn)?,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因?yàn)?,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C7、A【解析】利用基本不等式求得的最小值,把問題轉(zhuǎn)化為恒成立的類型,求解的最大值即可.【詳解】,,且a,b為正數(shù),,當(dāng)且僅當(dāng),即時(shí),,若不等式對任意實(shí)數(shù)x恒成立,則對任意實(shí)數(shù)x恒成立,即對任意實(shí)數(shù)x恒成立,,,故選:A【點(diǎn)睛】本題主要考查了恒成立問題,基本不等式求最值,二次函數(shù)求最值,屬于中檔題.8、B【解析】由條件可得圓心的軌跡是以點(diǎn)為圓心,半徑為2的圓,然后可得答案.【詳解】因?yàn)榘霃綖?的圓經(jīng)過點(diǎn)(5,12),所以圓心的軌跡是以點(diǎn)為圓心,半徑為2的圓,所以圓心到原點(diǎn)的距離的最小值為,故選:B9、C【解析】由角平分線的性質(zhì)可得,結(jié)合已知條件即可求雙曲線的離心率.【詳解】由題設(shè),易知:,由知:,即,整理得:.故選:C10、A【解析】由題意可知,十二個(gè)節(jié)氣其日影長依次成等差數(shù)列,設(shè)冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項(xiàng)公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A11、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點(diǎn),可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因?yàn)闉閽佄锞€上一點(diǎn),所以,解得.故選:B.【點(diǎn)睛】本題考查了平面向量加法的坐標(biāo)運(yùn)算,考查了求拋物線方程,屬于基礎(chǔ)題.12、B【解析】先得出圓的圓心和半徑,求出兩圓心間的距離,半徑之差,根據(jù)兩圓內(nèi)切得出方程,從而得出答案.【詳解】圓的圓心半徑的圓心半徑兩圓心之間的距離為兩圓的半徑之差為當(dāng)兩圓內(nèi)切時(shí),,解得或所以當(dāng),可得兩圓內(nèi)切,當(dāng)兩圓內(nèi)切時(shí),不能得出(可能)故“”是“兩圓內(nèi)切”的充分不必要條件故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)的中點(diǎn)是圓心,是半徑,即可寫出圓的標(biāo)準(zhǔn)方程.【詳解】因?yàn)楹?,故可得中點(diǎn)為,又,故所求圓的半徑為,則所求圓的標(biāo)準(zhǔn)方程是:.故答案為:.14、【解析】作垂直于準(zhǔn)線,垂足為,準(zhǔn)線與軸交于點(diǎn),根據(jù)已知條件,利用幾何方法,結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點(diǎn)坐標(biāo),準(zhǔn)線方程,作垂直于準(zhǔn)線于,準(zhǔn)線與軸交于點(diǎn),則,∴.∵,∴,由拋物線的定義得,∴.故答案為:.15、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關(guān)系.【詳解】由題意,平面的一個(gè)法向量分別為,,可得,所以,所以,即平面與的位置關(guān)系為平行.故答案為:平行16、【解析】建立空間直角坐標(biāo)系設(shè),,,,于是,,因?yàn)?,所以,從而,,此為點(diǎn)形成的軌跡方程,其在底面圓盤內(nèi)的長度為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)4【解析】(1)根據(jù),即可將直線的極坐標(biāo)方程轉(zhuǎn)化為普通方程;消參數(shù),即可求出曲線的普通方程;(2)由題意易知,求出直線的參數(shù)方程,將其代入曲線的普通方程,利用一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,即可求出結(jié)果【小問1詳解】解:直線極坐標(biāo)方程為,即,又,可得的普通方程為,曲線的參數(shù)方程是(為參數(shù),消參數(shù),所以曲線的普通方程為【小問2詳解】解:在中令得,,傾斜角,的參數(shù)方程可設(shè)為,即(為參數(shù)),將其代入,得,,設(shè),對應(yīng)的參數(shù)分別為,,則,,,異號,.18、(1)證明見解析(2)【解析】(1)先證,,再證平面即可;(2)建立空間直角坐標(biāo)系,先求出面與面的法向量,再計(jì)算夾角余弦值即可.小問1詳解】取中點(diǎn),連接,則四邊形為平行四邊形,,為直角三角形,且.又平面,平面,.又,平面.【小問2詳解】,為等邊三角形,取中點(diǎn),連接,則,以為坐標(biāo)原點(diǎn),分別以為軸建立空間坐標(biāo)系,如圖令,則,設(shè)面的法向量為,則由得取,則設(shè)面的法向量為,則由得取,則設(shè)面與面的夾角為,則所以面與面的夾角的余弦值為.19、(1);(2)【解析】(1)根據(jù)拋物線的定義,結(jié)合到焦點(diǎn)、軸的距離求,寫出拋物線方程.(2)直線的斜率不存在易得與不垂直與題設(shè)矛盾,設(shè)直線方程聯(lián)立拋物線方程,應(yīng)用韋達(dá)定理求,,進(jìn)而求,由題設(shè)向量垂直的坐標(biāo)表示有求直線方程即可.【詳解】(1)由己知,可設(shè)拋物線的方程為,又到焦點(diǎn)的距離是1,∴點(diǎn)到準(zhǔn)線的距離是1,又到軸的距離是,∴,解得,則拋物線方程是(2)假設(shè)直線的斜率不存在,則直線的方程為,與聯(lián)立可得交點(diǎn)、的坐標(biāo)分別為,,易得,可知直線與直線不垂直,不滿足題意,故假設(shè)不成立,∴直線的斜率存在.設(shè)直線為,整理得,設(shè),,聯(lián)立直線與拋物線的方程得,消去,并整理得,于是,,∴,又,因此,即,∴,解得或當(dāng)時(shí),直線的方程是,不滿足,舍去當(dāng)時(shí),直線的方程是,即,∴直線的方程是20、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,利用空間向量的坐標(biāo)運(yùn)算知,即可證得結(jié)論;(2)利用空間向量結(jié)合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問1詳解】以為坐標(biāo)原點(diǎn),,,所在直線分別為,,軸建立空間直角坐標(biāo)系,則,,,,設(shè),其中,,若是的中點(diǎn),則,,,于是,∴,即【小問2詳解】由題設(shè)知,,,是平面內(nèi)的兩個(gè)不共線向量設(shè)是平面的一個(gè)法向量,則,取,得又平面的一個(gè)法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時(shí)設(shè),而,由此得點(diǎn),,∵平面,且平面的一個(gè)法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【點(diǎn)睛】方法點(diǎn)睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計(jì)算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.21、(1);(2)或.【解析】(1)根據(jù)直線與圓相切,求得切線的斜率,利用點(diǎn)斜式即可寫出切線方程;(2)利用弦長公式,結(jié)合已知條件求得直線的斜率,即可求得直線方程.【小問1詳解】圓,圓心,半徑,又點(diǎn)的坐標(biāo)滿足圓方程,故可得點(diǎn)在圓上,則切線斜率滿足,又,故滿足題意的切線斜率,則過點(diǎn)的切線方程為,即.【小問2詳解】直線過點(diǎn),若斜率不存在,此時(shí)直線的方程為,將其代入可得或,故直線截圓所得弦長為滿足題意;若斜率存在時(shí),設(shè)直線方程為,則圓心到直線的距離,由弦長公式可得:,解得,也即,解得,則此時(shí)直線的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論