




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省廈門外國語中學(xué)2025屆高一上數(shù)學(xué)期末檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則()A. B.C. D.2.關(guān)于的方程的實數(shù)根的個數(shù)為()A.6 B.4C.3 D.23.在下列命題中,不是公理的是A.平行于同一條直線的兩條直線互相平行B.如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)C.空間中,如果兩個角的兩邊分別對應(yīng)平行,那么這兩角相等或互補D.如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線4.已知點A(2,0)和點B(﹣4,2),則|AB|=()A. B.2C. D.25.設(shè)函數(shù)滿足,當時,,則()A.0 B.C. D.16.若,則()A.2 B.1C.0 D.7.已知是銳角,那么是()A.第一象限角 B.第二象限角C.小于180°的正角 D.第一或第二象限角8.已知函數(shù)則函數(shù)的最大值是A.4 B.3C.5 D.9.下列命題中正確的是A. B.C. D.10.在一次數(shù)學(xué)實驗中,某同學(xué)運用圖形計算器采集到如下一組數(shù)據(jù):x01.002.03.0y0.240.5112.023.988.02在四個函數(shù)模型(a,b為待定系數(shù))中,最能反映,y函數(shù)關(guān)系的是().A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)(且)恒過的定點坐標為_____,若直線經(jīng)過點且,則的最小值為___________.12.已知扇形的圓心角為,半徑為,則扇形的面積為______13.已知向量,,則向量在方向上的投影為___________.14.方程的解為__________15.已知集合,,則集合中子集個數(shù)是____16.已知各頂點都在一個球面上的正四棱柱高為4,體積為16,則這個球的表面積是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)在閉區(qū)間()上的最小值為(1)求的函數(shù)表達式;(2)畫出的簡圖,并寫出的最小值18.如圖甲,直角梯形中,,,為的中點,在上,且,現(xiàn)沿把四邊形折起得到空間幾何體,如圖乙.在圖乙中求證:(1)平面平面;(2)平面平面.19.已知,其中為奇函數(shù),為偶函數(shù).(1)求與的解析式;(2)判斷函數(shù)在其定義域上的單調(diào)性(不需證明);(3)若不等式恒成立,求實數(shù)的取值范圍.20.已知函數(shù)f(x)=lg,(1)求f(x)的定義域并判斷它的奇偶性(2)判斷f(x)的單調(diào)性并用定義證明(3)解關(guān)于x的不等式f(x)+f(2x2﹣1)<021.如圖,在長方體中,,,是與的交點.求證:(1)平面(2)求與的所成角的正弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】比較a、b、c與中間值0和1的大小即可﹒【詳解】,,,∴﹒故選:A﹒2、D【解析】轉(zhuǎn)化為求或的實根個數(shù)之和,再構(gòu)造函數(shù)可求解.【詳解】因為,所以,所以,所以或,令,則或,因為為增函數(shù),且的值域為,所以和都有且只有一個實根,且兩個實根不相等,所以原方程的實根的個數(shù)為.故選:D3、C【解析】A,B,D分別為公理4,公理1,公理2,C為角平行性質(zhì),選C4、D【解析】由平面兩點的距離公式計算可得所求值.【詳解】由點A(2,0)和點B(﹣4,2),所以故選:D【點睛】本題考查平面上兩點間的距離,直接用平面上兩點間的距離公式解決,屬于基礎(chǔ)題.5、A【解析】根據(jù)給定條件依次計算并借助特殊角的三角函數(shù)值求解作答.【詳解】因函數(shù)滿足,且當時,,則,所以.故選:A6、C【解析】根據(jù)正弦、余弦函數(shù)的有界性及,可得,,再根據(jù)同角三角函數(shù)的基本關(guān)系求出,即可得解;【詳解】解:∵,,又∵,∴,,又∵,∴,∴,故選:C7、C【解析】由題知,故,進而得答案.【詳解】因為是銳角,所以,所以,滿足小于180°的正角.其中D選項不包括,故錯誤.故選:C8、B【解析】,從而當時,∴的最大值是考點:與三角函數(shù)有關(guān)的最值問題9、D【解析】本題考查向量基本運算對于A,,故A不正確;對于B,由于向量的加減運算的結(jié)果仍為向量,所以,故B錯誤;由于向量的數(shù)量積結(jié)果是一個實數(shù),故C錯誤,C的結(jié)果應(yīng)等于0;D正確10、B【解析】由題中表格數(shù)據(jù)畫出散點圖,由圖觀察實驗室指數(shù)型函數(shù)圖象【詳解】由題中表格數(shù)據(jù)畫出散點圖,如圖所示,觀察圖象,類似于指數(shù)函數(shù)對于A,是一次函數(shù),圖象是一條直線,所以A錯誤,對于B,是指數(shù)型函數(shù),所以B正確,對于C,是對數(shù)型函數(shù),由于表中的取到了負數(shù),所以C錯誤,對于D,是反比例型函數(shù),圖象是雙曲線,所以D錯誤,故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.【解析】根據(jù)對數(shù)函數(shù)過定點得過定點,再根據(jù)基本不等式“1”的用法求解即可.【詳解】解:函數(shù)(且)由函數(shù)(且)向上平移1個單位得到,函數(shù)(且)過定點,所以函數(shù)過定點,即,所以,因為,所以所以,當且僅當,即時等號成立,所以的最小值為故答案為:;12、【解析】∵扇形的圓心角為,半徑為,∴扇形的面積故答案為13、【解析】直接利用投影的定義求在方向上的投影.【詳解】因為,,設(shè)與夾角為,,則向量在方向上的投影為:.所以在方向上投影為故答案為:.14、【解析】令,則解得:或即,∴故答案為15、4【解析】根據(jù)題意,分析可得集合的元素為圓上所有的點,的元素為直線上所有的點,則中元素為直線與圓的交點,由直線與圓的位置關(guān)系分析可得直線與圓的交點個數(shù),即可得答案【詳解】由題意知中的元素為圓與直線交點,因為圓心(1,-2)到直線2x+y-5=0的距離∴直線與圓相交∴集合有兩個元素,故集合中子集個數(shù)為4故答案為4【點睛】本題考查直線與圓的位置關(guān)系,涉及集合交集的意義,解答本題的關(guān)鍵是判定直線與圓的位置關(guān)系,以及運用集合的結(jié)論:一個含有個元素的集合的子集的個數(shù)為個.16、【解析】正四棱柱的高是4,體積是16,則底面邊長為2,底面正方形的對角線長度為,所以正四棱柱體對角線的長度為,四棱柱體對角線為外接球的直徑,所以球的半徑為,所以球的表面積為考點:正四棱柱外接球表面積三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】【試題分析】(1)由于函數(shù)的對稱軸為且開口向上,所以按三類,討論函數(shù)的最小值.(2)由(1)將分段函數(shù)的圖象畫出,由圖象可判斷出函數(shù)的最小值.【試題解析】(1)依題意知,函數(shù)是開口向上的拋物線,∴函數(shù)有最小值,且當時,下面分情況討論函數(shù)在閉區(qū)間()上的取值情況:①當閉區(qū)間,即時,在處取到最小值,此時;②當,即時,在處取到最小值,此時;③當閉區(qū)間,即時,在處取到最小值,此時綜上,的函數(shù)表達式為(2)由(1)可知,為分段函數(shù),作出其圖象如圖:由圖像可知【點睛】本題主要考查二次函數(shù)在動區(qū)間上的最值問題,考查分類討論的數(shù)學(xué)思想,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法.由于二次函數(shù)的解析式是知道的,即開口方向和對稱軸都知道,而題目給定定義域是含有參數(shù)的動區(qū)間,故需要對區(qū)間和對稱軸對比進行分類討論函數(shù)的最值.18、(1)證明見解析(2)證明見解析【解析】(1)證明出平面,平面,利用面面垂直的判定定理可證得結(jié)論成立;(2)證明出平面,可得出平面,利用面面垂直的判定定理可證得結(jié)論成立.【小問1詳解】證明:翻折前,,翻折后,則有,,因為平面,平面,平面,因為平面,平面,平面,因為,因此,平面平面.【小問2詳解】證明:翻折前,在梯形中,,,則,,則,翻折后,對應(yīng)地,,,因為,所以,平面,,則平面,平面,因此,平面平面.19、(1),;(2)函數(shù)在其定義域上為減函數(shù);(3).【解析】(1)由與可建立有關(guān)、的方程組,可得解出與的解析式;(2)化簡函數(shù)解析式,根據(jù)函數(shù)的解析式可直接判斷函數(shù)的單調(diào)性;(3)將所求不等式變形為,根據(jù)函數(shù)的定義域、單調(diào)性可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】(1)由于函數(shù)為奇函數(shù),為偶函數(shù),,,即,所以,,解得,.由,可得,所以,,;(2)函數(shù)的定義域為,,所以,函數(shù)在其定義域上為減函數(shù);(3)由于函數(shù)為定義域上的奇函數(shù),且為減函數(shù),由,可得,由題意可得,解得.因此,實數(shù)的取值范圍是.【點睛】思路點睛:根據(jù)函數(shù)單調(diào)性求解函數(shù)不等式的思路如下:(1)先分析出函數(shù)在指定區(qū)間上的單調(diào)性;(2)根據(jù)函數(shù)單調(diào)性將函數(shù)值的關(guān)系轉(zhuǎn)變?yōu)樽宰兞恐g的關(guān)系,并注意定義域;(3)求解關(guān)于自變量的不等式,從而求解出不等式的解集.20、(1)奇函數(shù)(2)見解析(3)【解析】(1)先求函數(shù)f(x)的定義域,然后檢驗與f(x)的關(guān)系即可判斷;(2)利用單調(diào)性的定義可判斷f(x)在(﹣1,1)上單調(diào)性;(3)結(jié)合(2)中函數(shù)的單調(diào)性及函數(shù)的定義域,建立關(guān)于x的不等式,可求【詳解】(1)的定義域為(-1,1)因為,所以為奇函數(shù)(2)為減函數(shù).證明如下:任取兩個實數(shù),且,===<0<0,所以在(-1,1)上為單調(diào)減函數(shù)(3)由題意:,由(1)、(2)知是定義域內(nèi)單調(diào)遞減的奇函數(shù)即不等式的解集為(,)【點睛】本題主要考查了函數(shù)單調(diào)性及奇偶性的定義的應(yīng)用,及函數(shù)單調(diào)性在求解不等式中的應(yīng)用21、(1)見解析;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件開發(fā)與部署合同書范本
- 清華大學(xué)《果蔬飲料新產(chǎn)品開發(fā)與配方設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西臨汾霍州第一期第二次月考2025屆初三第二學(xué)期3月第一次測試數(shù)學(xué)試題含解析
- 浙江杭州西湖區(qū)重點名校2025年初三年級學(xué)情檢測試題英語試題含答案
- 私家車出租合同
- 寧波幼兒師范高等??茖W(xué)?!蹲≌O(shè)計原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧省鞍山市臺安縣2025屆數(shù)學(xué)三下期末教學(xué)質(zhì)量檢測試題含解析
- 四川省成都市成華區(qū)重點中學(xué)2025屆初三期初調(diào)研考試語文試題試卷含解析
- 遼寧民族師范高等??茖W(xué)校《禮儀文化與有效溝通》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東省濱州市濱城區(qū)濱北街道辦事處北城英才學(xué)校2025屆六年級下學(xué)期小升初數(shù)學(xué)試卷含解析
- 德施曼智能鎖使用說明書
- 《辦公室用語》課件
- 光伏并網(wǎng)前單位工程驗收報告-2023
- 《高層建筑結(jié)構(gòu)設(shè)計》課件 第5、6章 高層建筑結(jié)構(gòu)有限元計算、高層框架結(jié)構(gòu)設(shè)計
- 除濕防潮施工方案
- 基于PLC的自動化立體倉庫控制系統(tǒng)設(shè)計
- 《囊螢夜讀.》教學(xué)設(shè)計及教學(xué)反思
- 2023下半年教師資格《初中道德與法治學(xué)科知識與教學(xué)能力》押題卷2
- 壓力容器年度自查表
- 危險化學(xué)品安全管理與安全技術(shù)培訓(xùn)課件
- 小學(xué)數(shù)學(xué)-《圖形的拼組》教學(xué)課件設(shè)計
評論
0/150
提交評論