2025屆湖北省武漢市六校聯考數學高三上期末質量檢測模擬試題含解析_第1頁
2025屆湖北省武漢市六校聯考數學高三上期末質量檢測模擬試題含解析_第2頁
2025屆湖北省武漢市六校聯考數學高三上期末質量檢測模擬試題含解析_第3頁
2025屆湖北省武漢市六校聯考數學高三上期末質量檢測模擬試題含解析_第4頁
2025屆湖北省武漢市六校聯考數學高三上期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖北省武漢市六校聯考數學高三上期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的偶函數滿足,且在區(qū)間上是減函數,令,則的大小關系為()A. B.C. D.2.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形3.設i為數單位,為z的共軛復數,若,則()A. B. C. D.4.函數的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③5.劉徽是我國魏晉時期偉大的數學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內隨機取一個點,此點取自朱方的概率為()A. B. C. D.6.若復數滿足,其中為虛數單位,是的共軛復數,則復數()A. B. C.4 D.57.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.8.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內,點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經過△AB'CA.重心 B.垂心 C.內心 D.外心9.在三棱錐中,,,P在底面ABC內的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.10.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則11.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.12.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,過點且斜率為1的直線交拋物線于兩點,,若線段的垂直平分線與軸交點的橫坐標為,則的值為_________.14.已知數列的前項和為,,,,則滿足的正整數的所有取值為__________.15.在各項均為正數的等比數列中,,且,成等差數列,則___________.16.函數的圖象在處的切線方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列的前n項和為,等比數列的前n項和為,且,,.(1)求數列與的通項公式;(2)求數列的前n項和.18.(12分)已知函數(1)若對任意恒成立,求實數的取值范圍;(2)求證:19.(12分)在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.20.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標系,如圖所示,山區(qū)邊界曲線為,設公路與曲線相切于點,的橫坐標為.(1)當為何值時,公路的長度最短?求出最短長度;(2)當公路的長度最短時,設公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應開鑿的隧道的長度.21.(12分)(江蘇省徐州市高三第一次質量檢測數學試題)在平面直角坐標系中,已知平行于軸的動直線交拋物線:于點,點為的焦點.圓心不在軸上的圓與直線,,軸都相切,設的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點,過且垂直于的直線為,直線,分別與軸相交于點,.當線段的長度最小時,求的值.22.(10分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設與交于,兩點,線段的中點為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

可設,根據在上為偶函數及便可得到:,可設,,且,根據在上是減函數便可得出,從而得出在上單調遞增,再根據對數的運算得到、、的大小關系,從而得到的大小關系.【詳解】解:因為,即,又,設,根據條件,,;若,,且,則:;在上是減函數;;;在上是增函數;所以,故選:C【點睛】考查偶函數的定義,減函數及增函數的定義,根據單調性定義判斷一個函數單調性的方法和過程:設,通過條件比較與,函數的單調性的應用,屬于中檔題.2、D【解析】

A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.3、A【解析】

由復數的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復數的乘除法運算,考查共軛復數的概念,掌握復數的運算法則是解題關鍵.4、B【解析】

根據三角函數的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數的對稱軸、對稱中心,考查三角函數圖象變換,屬于基礎題.5、C【解析】

首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數形結合的思想和運算求解的能力,屬于基礎題.6、D【解析】

根據復數的四則運算法則先求出復數z,再計算它的模長.【詳解】解:復數z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數的計算問題,要求熟練掌握復數的四則運算以及復數長度的計算公式,是基礎題.7、D【解析】

設圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎題.8、A【解析】

根據題意P到兩個平面的距離相等,根據等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.9、A【解析】

設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題10、D【解析】

利用線面平行和垂直的判定定理和性質定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當,且,則與的位置關系不定,故錯;對于,當時,不能判定,故錯;對于,若,且,則與的位置關系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關系.判斷線面位置位置關系利用好線面平行和垂直的判定定理和性質定理.一般可借助正方體模型,以正方體為主線直觀感知并準確判斷.11、A【解析】

推導出,分別取的中點,連結,則,推導出,從而,進而四面體的體積為,由此能求出結果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結,則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關系等基礎知識,考查運算求解能力.12、D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

設,寫出直線方程代入拋物線方程后應用韋達定理求得,由拋物線定義得焦點弦長,求得,再寫出的垂直平分線方程,得,從而可得結論.【詳解】拋物線的焦點坐標為,直線的方程為,據得.設,則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.【點睛】本題考查拋物線的焦點弦問題,根據拋物線的定義表示出焦點弦長是解題關鍵.14、20,21【解析】

由題意知數列奇數項和偶數項分別為等差數列和等比數列,則根據為奇數和為偶數分別算出求和公式,代入數值檢驗即可.【詳解】解:由題意知數列的奇數項構成公差為的等差數列,偶數項構成公比為的等比數列,則;.當時,,.當時,,.由此可知,滿足的正整數的所有取值為20,21.故答案為:20,21【點睛】本題考查等差數列與等比數列通項與求和公式,是綜合題,分清奇數項和偶數項是解題的關鍵.15、【解析】

利用等差中項的性質和等比數列通項公式得到關于的方程,解方程求出代入等比數列通項公式即可.【詳解】因為,成等差數列,所以,由等比數列通項公式得,,所以,解得或,因為,所以,所以等比數列的通項公式為.故答案為:【點睛】本題考查等差中項的性質和等比數列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數列通項公式是求解本題的關鍵;屬于中檔題.16、【解析】

利用導數的幾何意義,對求導后在計算在處導函數的值,再利用點斜式列出方程化簡即可.【詳解】,則切線的斜率為.又,所以函數的圖象在處的切線方程為,即.故答案為:【點睛】本題主要考查了根據導數的幾何意義求解函數在某點處的切線方程問題,需要注意求導法則與計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)設數列的公差為d,由可得,,由即可解得,故,由,即可解得,進而求得.(2)由(1)得,,利用分組求和及錯位相減法即可求得結果.【詳解】(1)設數列的公差為d,數列的公比為q,由可得,,整理得,即,故,由可得,則,即,故.(2)由(1)得,,,故,所以,數列的前n項和為,設①,則②,②①得,綜上,數列的前n項和為.【點睛】本題考查求等差等比的通項公式,考試分組求和及錯位相減法求數列的和,考查學生的計算能力,難度一般.18、(1);(2)見解析.【解析】

(1)將問題轉化為對任意恒成立,換元構造新函數即可得解;(2)結合(1)可得,令,求導后證明其導函數單調遞增,結合,即可得函數的單調區(qū)間和最小值,即可得證.【詳解】(1)對任意恒成立等價于對任意恒成立,令,,則,當時,,單調遞增;當時,,單調遞減;有最大值,.(2)證明:由(1)知,當時,即,,,令,則,令,則,在上是增函數,又,當時,;當時,,在上是減函數,在上是增函數,,即,.【點睛】本題考查了利用導數解決恒成立問題,考查了利用導數證明不等式,考查了計算能力和轉化化歸思想,屬于中檔題.19、(1)證明見解析(2)45°【解析】

(1)設的中點為,連接,設的中點為,連接,,從而即為二面角的平面角,,推導出,從而平面,則,即,進而平面,推導四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點,在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點,∴.設的中點為,連接.設的中點為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點.易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點.∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標系,設.則,,,,顯然平面的法向量,設平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通??刹捎脦缀畏椒ê拖蛄糠椒▋煞N進行求解.20、(1)當時,公路的長度最短為千米;(2)(千米).【解析】

(1)設切點的坐標為,利用導數的幾何意義求出切線的方程為,根據兩點間距離得出,構造函數,利用導數求出單調性,從而得出極值和最值,即可得出結果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據勾股定理即可求出的長度.【詳解】(1)由題可知,設點的坐標為,又,則直線的方程為,由此得直線與坐標軸交點為:,則,故,設,則.令,解得=10.當時,是減函數;當時,是增函數.所以當時,函數有極小值,也是最小值,所以,此時.故當時,公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點睛】本題考查利用導數解決實際的最值問題,涉及構造函數法以及利用導數研究函數單調性和極值,還考查正余弦定理的實際應用,還考查解題分析能力和計算能力.21、(1).(2)見解析.【解析】試題分析:(1)設根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論