![湖北省襄州區(qū)四校2025屆數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第1頁](http://file4.renrendoc.com/view12/M01/2C/2D/wKhkGWcJYk-AXl8_AAJfkCrkYj0726.jpg)
![湖北省襄州區(qū)四校2025屆數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第2頁](http://file4.renrendoc.com/view12/M01/2C/2D/wKhkGWcJYk-AXl8_AAJfkCrkYj07262.jpg)
![湖北省襄州區(qū)四校2025屆數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第3頁](http://file4.renrendoc.com/view12/M01/2C/2D/wKhkGWcJYk-AXl8_AAJfkCrkYj07263.jpg)
![湖北省襄州區(qū)四校2025屆數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第4頁](http://file4.renrendoc.com/view12/M01/2C/2D/wKhkGWcJYk-AXl8_AAJfkCrkYj07264.jpg)
![湖北省襄州區(qū)四校2025屆數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第5頁](http://file4.renrendoc.com/view12/M01/2C/2D/wKhkGWcJYk-AXl8_AAJfkCrkYj07265.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省襄州區(qū)四校2025屆數(shù)學(xué)高三上期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若方程有唯一解,則實數(shù)的取值范圍是()A. B.C. D.2.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.123.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.4.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國防大學(xué)、國防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國防科技大學(xué)的是研究生.則丙是來自哪個院校的,學(xué)位是什么()A.國防大學(xué),研究生 B.國防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國防科技大學(xué),研究生5.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.37.執(zhí)行程序框圖,則輸出的數(shù)值為()A. B. C. D.8.已知是等差數(shù)列的前項和,若,設(shè),則數(shù)列的前項和取最大值時的值為()A.2020 B.20l9 C.2018 D.20179.設(shè)集合,則()A. B.C. D.10.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-311.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.712.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,滿足,,,則的取值范圍為_________.14.已知函數(shù),若在定義域內(nèi)恒有,則實數(shù)的取值范圍是__________.15.已知非零向量的夾角為,且,則______.16.曲線f(x)=(x2+x)lnx在點(1,f(1))處的切線方程為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.18.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)若,求曲線與的交點坐標;(2)過曲線上任意一點作與夾角為45°的直線,交于點,且的最大值為,求的值.19.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關(guān)?非體育迷體育迷合計男女1055合計(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63520.(12分)近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院人進行了問卷調(diào)查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計男女合計已知在全部人中隨機抽取人,抽到患心肺疾病的人的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關(guān)?請說明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進行問卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)21.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔當之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:日期1234567全國累計報告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測2月10日全國累計報告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計公式分別為:,.22.(10分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求出的表達式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當即圖象相切時,根據(jù),,解得舍去),則的范圍是,故選:.【點睛】本題考查函數(shù)的零點問題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.2、D【解析】
推導(dǎo)出,且,,,設(shè)中點為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點為,則平面,∴,∴,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應(yīng)用,屬于中檔題.3、A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運算法則求出,即可根據(jù)復(fù)數(shù)的模計算公式求出.【詳解】∵,∴.故選:A.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運算法則的應(yīng)用,以及復(fù)數(shù)的模計算公式的應(yīng)用,屬于容易題.4、C【解析】
根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點睛】本題考查了合情推理的簡單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.5、B【解析】
根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運用,屬于基礎(chǔ)題.6、A【解析】
由復(fù)數(shù)除法求出,再由模的定義計算出模.【詳解】.故選:A.【點睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運算,屬于基礎(chǔ)題.7、C【解析】
由題知:該程序框圖是利用循環(huán)結(jié)構(gòu)計算并輸出變量的值,計算程序框圖的運行結(jié)果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點睛】本題主要考查程序框圖中的循環(huán)結(jié)構(gòu),屬于簡單題.8、B【解析】
根據(jù)題意計算,,,計算,,,得到答案.【詳解】是等差數(shù)列的前項和,若,故,,,,故,當時,,,,,當時,,故前項和最大.故選:.【點睛】本題考查了數(shù)列和的最值問題,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.9、B【解析】
直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎(chǔ)題.10、D【解析】分析:根據(jù)平面向量的數(shù)量積可得,再結(jié)合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數(shù)量積以及投影的應(yīng)用問題,也考查了數(shù)形結(jié)合思想的應(yīng)用問題.11、C【解析】
根據(jù)程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C【點睛】本題主要考查了程序框圖的計算,解題的關(guān)鍵是理解程序框圖運行的過程.12、D【解析】
設(shè)出的坐標為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設(shè),則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學(xué)生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關(guān)點法;④參數(shù)法;⑤待定系數(shù)法二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),,,,由,,,根據(jù)平面向量模的幾何意義,可得A點軌跡為以O(shè)為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,為的距離,利用數(shù)形結(jié)合求解.【詳解】設(shè),,,,如圖所示:因為,,,所以A點軌跡為以O(shè)為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,則即的距離,由圖可知,.故答案為:【點睛】本題主要考查平面向量的模及運算的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.14、【解析】
根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)圖象可將原題轉(zhuǎn)化為恒成立問題,湊而可知的圖象在過原點且與兩函數(shù)相切的兩條切線之間;利用過一點的曲線切線的求法可求得兩切線斜率,結(jié)合分母不為零的條件可最終確定的取值范圍.【詳解】由指數(shù)函數(shù)與對數(shù)函數(shù)圖象可知:,恒成立可轉(zhuǎn)化為恒成立,即恒成立,,即是夾在函數(shù)與的圖象之間,的圖象在過原點且與兩函數(shù)相切的兩條切線之間.設(shè)過原點且與相切的直線與函數(shù)相切于點,則切線斜率,解得:;設(shè)過原點且與相切的直線與函數(shù)相切于點,則切線斜率,解得:;當時,,又,滿足題意;綜上所述:實數(shù)的取值范圍為.【點睛】本題考查恒成立問題的求解,重點考查了導(dǎo)數(shù)幾何意義應(yīng)用中的過一點的曲線切線的求解方法;關(guān)鍵是能夠結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)圖象將問題轉(zhuǎn)化為切線斜率的求解問題;易錯點是忽略分母不為零的限制,忽略對于臨界值能否取得的討論.15、1【解析】
由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【點睛】本題考查根據(jù)向量的數(shù)量積運算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡求解即可,屬于基礎(chǔ)題.16、【解析】
求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求出切線方程.【詳解】解:∵,
∴,
則,
又,即切點坐標為(1,0),
則函數(shù)在點(1,f(1))處的切線方程為,
即,
故答案為:.【點睛】本題主要考查導(dǎo)數(shù)的幾何意義,根據(jù)導(dǎo)數(shù)和切線斜率之間的關(guān)系是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)最小值為1【解析】
(1)利用基本不等式可得,再根據(jù)0<xy<1時,即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數(shù),∴|x+z|?|y+z|=(x+z)(y+z)≥=,當且僅當x=y(tǒng)=z時取等號.又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當且僅當x=y(tǒng)=z=1時取等號,∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉(zhuǎn)化思想和運算能力,屬中檔題.18、(1),;(2)或【解析】
(1)將曲線的極坐標方程和直線的參數(shù)方程化為直角坐標方程,聯(lián)立方程,即可求得曲線與的交點坐標;(2)由直線的普通方程為,故上任意一點,根據(jù)點到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標方程為.當時,直線的普通方程為由解得或.從而與的交點坐標為,.(2)由題意知直線的普通方程為,的參數(shù)方程為(為參數(shù))故上任意一點到的距離為則.當時,的最大值為所以;當時,的最大值為,所以.綜上所述,或【點睛】解題關(guān)鍵是掌握極坐標和參數(shù)方程化為直角坐標方程的方法,和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.19、(1)無關(guān);(2),.【解析】
(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計男301545女451055合計7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計算,得.因為3.030<3.841,所以我們沒有充分理由認為“體育迷”與性別有關(guān).(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=20、(1)列聯(lián)表見解析,有的把握認為患心肺疾病與性別有關(guān),理由見解析;(2).【解析】
(1)結(jié)合題意完善列聯(lián)表,計算出的觀測值,對照臨界值表可得出結(jié)論;(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數(shù),利用古典概型的概率公式可取得所求事件的概率.【詳解】(1)由于在全部人中隨機抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數(shù)為人,故可將列聯(lián)表補充如
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度屋頂光伏系統(tǒng)維護保養(yǎng)合同模板
- 學(xué)校安全管理方案
- 2024-2025學(xué)年廣西壯族自治區(qū)高三上學(xué)期11月聯(lián)考歷史試卷
- 2025年公共照明設(shè)施合同
- 2025年自動化設(shè)備購買與前期策劃協(xié)議
- 2025年住宅用地和樓宇訂購合同
- 2025年綠化養(yǎng)護承包合同范本
- 2025年外教聘請合作協(xié)議
- 2025年二手房產(chǎn)交易代理協(xié)議格式
- 2025年交通運輸中介合同協(xié)議書范本
- Q∕GDW 10364-2020 單相智能電能表技術(shù)規(guī)范
- 電廠鋼結(jié)構(gòu)施工方案(53頁)
- 房地產(chǎn)現(xiàn)金流量表
- 水體國產(chǎn)載體固化微生物
- 2022年露天煤礦安全資格證考試題庫-上(單選、多選題庫)
- MIL-STD-1916 抽樣技術(shù) (C=0 零不良)
- 膠合板公司人員招聘與配置(模板)
- 團建方案版攻防箭對戰(zhàn)
- 樁身強度自動驗算表格Excel
- 燃氣輪機LM2500介紹
- (精選)淺談在小學(xué)數(shù)學(xué)教學(xué)中如何進行有效提問
評論
0/150
提交評論