2025屆安徽省合肥廬陽高級中學高三數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
2025屆安徽省合肥廬陽高級中學高三數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
2025屆安徽省合肥廬陽高級中學高三數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
2025屆安徽省合肥廬陽高級中學高三數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
2025屆安徽省合肥廬陽高級中學高三數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省合肥廬陽高級中學高三數(shù)學第一學期期末經(jīng)典模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.2.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個數(shù)為()①②③④⑤A.1個 B.2個 C.3個 D.4個3.把函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,若函數(shù)是偶函數(shù),則實數(shù)的最小值是()A. B. C. D.4.下列與函數(shù)定義域和單調性都相同的函數(shù)是()A. B. C. D.5.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.6.已知集合,集合,則A. B.或C. D.7.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機取一點,若此點取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關系不能確定8.一艘海輪從A處出發(fā),以每小時24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點間的距離是()A.6海里 B.6海里 C.8海里 D.8海里9.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.10.雙曲線的漸近線方程是()A. B. C. D.11.設,,,則、、的大小關系為()A. B. C. D.12.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內(nèi)隨機取N個點,經(jīng)統(tǒng)計落入五環(huán)內(nèi)部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,點在曲線:上,且在第四象限內(nèi).已知曲線在點處的切線為,則實數(shù)的值為__________.14.在的展開式中,的系數(shù)為______用數(shù)字作答15.雙曲線的左焦點為,點,點P為雙曲線右支上的動點,且周長的最小值為8,則雙曲線的實軸長為________,離心率為________.16.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,隨機抽取了150分到450分之間的1000名學生的成績,并根據(jù)這1000名學生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[250,400)內(nèi)的學生共有____人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若對任意都有,求實數(shù)的取值范圍.18.(12分)已知數(shù)列滿足且(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)已知函數(shù)()的圖象在處的切線為(為自然對數(shù)的底數(shù))(1)求的值;(2)若,且對任意恒成立,求的最大值.20.(12分)已知函數(shù).(1)解不等式;(2)使得,求實數(shù)的取值范圍.21.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項公式;(2)設,求數(shù)列的前項和.22.(10分)某芯片公司對今年新開發(fā)的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調查的芯片得分均在內(nèi)),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數(shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續(xù)測試,現(xiàn)手機公司測試部門預算的測試經(jīng)費為10萬元,試問預算經(jīng)費是否足夠測試完這100顆芯片?請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨取;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質,屬綜合基礎題.2、B【解析】

滿足(1)(2)的函數(shù)是偶函數(shù)且值域關于原點對稱,分別對所給函數(shù)進行驗證.【詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.【點睛】本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質,考查學生邏輯推理與分析能力,是一道容易題.3、A【解析】

先求出的解析式,再求出的解析式,根據(jù)三角函數(shù)圖象的對稱性可求實數(shù)滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應的函數(shù)解析式為,故.令,,解得,.因為為偶函數(shù),故直線為其圖象的對稱軸,令,,故,,因為,故,當時,.故選:A.【點睛】本題考查三角函數(shù)的圖象變換以及三角函數(shù)的圖象性質,注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應的解析式為,另外,如果為正弦型函數(shù)圖象的對稱軸,則有,本題屬于中檔題.4、C【解析】

分析函數(shù)的定義域和單調性,然后對選項逐一分析函數(shù)的定義域、單調性,由此確定正確選項.【詳解】函數(shù)的定義域為,在上為減函數(shù).A選項,的定義域為,在上為增函數(shù),不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數(shù),符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數(shù)的定義域和單調性,屬于基礎題.5、C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.6、C【解析】

由可得,解得或,所以或,又,所以,故選C.7、B【解析】

先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點取自陰影部分的概率為.又,故.故選B.【點睛】本題考查了幾何概型,定積分的計算以及幾何意義,屬于中檔題.8、A【解析】

先根據(jù)給的條件求出三角形ABC的三個內(nèi)角,再結合AB可求,應用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點睛】本題考查正弦定理的實際應用,關鍵是將給的角度、線段長度轉化為三角形的邊角關系,利用正余弦定理求解.屬于中檔題.9、B【解析】

直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.10、C【解析】

根據(jù)雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質的合理運用.11、D【解析】

因為,,所以且在上單調遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數(shù)函數(shù)的單調性比較指對數(shù)的大小,難度一般.除了可以直接利用單調性比較大小,還可以根據(jù)中間值“”比較大小.12、B【解析】

根據(jù)比例關系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先設切點,然后對求導,根據(jù)切線方程的斜率求出切點的橫坐標,代入原函數(shù)求出切點的縱坐標,即可得出切得,最后將切點代入切線方程即可求出實數(shù)的值.【詳解】解:依題意設切點,因為,則,又因為曲線在點處的切線為,,解得,又因為點在第四象限內(nèi),則,.則又因為點在切線上.所以.所以.故答案為:【點睛】本題考查了導數(shù)的幾何意義,以及導數(shù)的運算法則和已知切線斜率求出切點坐標,本題屬于基礎題.14、1【解析】

利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.15、22【解析】

設雙曲線的右焦點為,根據(jù)周長為,計算得到答案.【詳解】設雙曲線的右焦點為.周長為:.當共線時等號成立,故,即實軸長為,.故答案為:;.【點睛】本題考查雙曲線周長的最值問題,離心率,實軸長,意在考查學生的計算能力和轉化能力.16、750【解析】因為0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.005三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

利用零點分區(qū)間法,去掉絕對值符號分組討論求并集,對恒成立,則,由三角不等式,得求解【詳解】解:當時,不等式即為,可得或或,解得或或,則原不等式的解集為若對任意、都有,即為,由,當取得等號,則,由,可得,則的取值范圍是【點睛】本題考查含有兩個絕對值符號的不等式解法及利用三角不等式解恒成立問題.(1)含有兩個絕對值符號的不等式常用解法可用零點分區(qū)間法去掉絕對值符號,將其轉化為與之等價的不含絕對值符號的不等式(組)求解(2)利用三角不等式把不等式恒成立問題轉化為函數(shù)最值問題.18、(1);(2)【解析】

(1)根據(jù)已知可得數(shù)列為等比數(shù)列,即可求解;(2)由(1)可得為等比數(shù)列,根據(jù)等比數(shù)列和等差數(shù)列的前項和公式,即可求解.【詳解】(1)因為,所以,又所以數(shù)列為等比數(shù)列,且首項為,公比為.故(2)由(1)知,所以所以【點睛】本題考查等比數(shù)列的定義及通項公式、等差數(shù)列和等比數(shù)列的前項和,屬于基礎題.19、(1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據(jù)函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對任意恒成立,等價于對任意恒成立,構造,求出的單調性,由,,,,可得存在唯一的零點,使得,利用單調性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調遞增.又,,,,所以存在唯一的,使得,且當時,,時,.即在單調遞減,在上單調遞增.所以.又,即,∴.∴.∵,∴.又因為對任意恒成立,又,∴.點睛:利用導數(shù)研究不等式恒成立或存在型問題,首先要構造函數(shù),利用導數(shù)研究函數(shù)的單調性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造函數(shù),直接把問題轉化為函數(shù)的最值問題.20、(1);(2)或.【解析】

(1)分段討論得出函數(shù)的解析式,再分范圍解不等式,可得解集;(2)先求出函數(shù)的最小值,再建立關于的不等式,可求得實數(shù)的取值范圍.【詳解】(1)因為,所以當時,;當時,無解;當時,;綜上,不等式的解集為;(2),又,或.【點睛】本題考查分段函數(shù),絕對值不等式的解法,以及關于函數(shù)的存在和任意的問題,屬于中檔題.21、(1);(2).【解析】試題分析:(1)設等差數(shù)列滿的首項為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過裂項求和可求得。試題解析:(1)設等差數(shù)列的公差為,則由題意可得,解得.所以.(2)因為,所以.所以.22、(1)(2)預算經(jīng)費不夠測試完這100顆芯片,理由見解析【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論