版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Explainability&
CommonRobustness姜育剛,馬興軍,吳祖煊
1.
What
is
Machine
Learning
2.
Machine
Learning
Paradigms3.
Loss
FunctionsRecap:
week
14.
Optimization
MethodsMachine
Learning
Pipelinesetuptheinputsetuptheoptimisersetupthelossregularizationmakesdecisionregionsmootherlandscape
ofalossfunction,itvariesw.r.t.data,thefunctionitselfMachine
Learning
Pipelinesetuptheinputsetuptheoptimisersetupthelossregularizationmakesdecisionregionsmootherlandscape
ofalossfunction,itvariesw.r.t.data,thefunctionitselfModel?Deep
Neural
Networks/neural-network-zoo/;/articles/cc-machine-learning-deep-learning-architectures/Feed-Forward
Neural
NetworksFeed-ForwardNeuralNetworks
(FNN)Fully
Connected
Neural
Networks
(FCN)Multilayer
Perceptron
(MLP)The
simplest
neural
networkFully-connectedbetweenlayersFordatathathasNOtemporalorspatialorder/ConvolutionalNeuralNetworksForimagesordatawithspatialorderCan
stack
up
to
>100
layers/Neurons
in
3
dimensionsNeurons
in
one
flat
layerRecurrent
Neural
Networks/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networksTraditional
RNNTransformersVaswani,Ashish,etal."Attentionisallyouneed."
Advancesinneuralinformationprocessingsystems
30(2017)Transformer:
a
new
type
of
DNNs
based
on
attentionEncoderDecoderSelf-Attention
Explained/illustrated-self-attention-2d627e33b20aCNN
ExplainedLearns
different
levels
of
representations/A
brief
history
of
CNNs:LeNet,1990sAlexNet,2012ZFNet,2013GoogLeNet,2014VGGNet,2014ResNet,2015InceptionV4,2016ResNeXt,
2017ViT,
2021AnImageisWorth16x16Words:TransformersforImageRecognitionatScale,
ICLR
2021Explainable
AI深度學(xué)習(xí)可解釋性學(xué)習(xí)機(jī)理推理機(jī)理泛化機(jī)理認(rèn)知機(jī)理魯棒性學(xué)習(xí)過(guò)程學(xué)習(xí)結(jié)果決策依據(jù)推理機(jī)制泛化原因泛化條件認(rèn)知科學(xué)認(rèn)知啟發(fā)的智能普通魯棒性對(duì)抗魯棒性我們想要弄清楚下列問(wèn)題:DNN是怎么學(xué)習(xí)的、學(xué)到了什么、靠什么泛化、在什么情況下行又在什么情況下不行?深度學(xué)習(xí)是否是真正的智能,與人類智能比誰(shuí)更高級(jí),它的未來(lái)是什么?是否存在大一統(tǒng)的理論,不但能解釋而且能提高?Methodological
PrinciplesVisualizationAblationContrastModelComponentLayerOperationNeuronSuperclassClassTraining/Test
setSubsetSampleTrainingInferenceTransferReverseHow
to
Understand
Machine
LearningLearning
is
the
process
of
empirical
risk
minimization
(ERM)Learning
MechanismTraining/Test
Error/AccuracyPrediction
Confidence
Explanation
via
observation:
just
plot!Wang
et
al.
SymmetricCrossEntropyforRobustLearningwithNoisyLabels,
ICCV
2019.Learning
MechanismParameter
dynamicsGradient
dynamicsExplanation
via
dynamics
and
informationTRADI:Trackingdeepneuralnetworkweightdistributions,
ECCV
2020;
Shwartz-ZivR,TishbyN.Openingtheblackboxofdeepneuralnetworksviainformation[J].arXiv:1703.00810,2017.Learning
MechanismDecision
boundary,
learning
process
visualizationExplanation
via
dynamics
and
informationhttps://distill.pub/2020/grand-tour/(March16,2020);
/Learning
MechanismData
influence/valuation:
how
a
training
sample
impacts
the
learning
outcome?UnderstandingBlack-boxPredictionsviaInfluenceFunctions,
ICML,
2018;
PruthiG,LiuF,KaleS,etal.Estimatingtrainingdatainfluencebytracinggradientdescent.NeurIPS,2020.Datashapley:Equitablevaluationof
data
formachinelearning,
ICML,
2019.Influence
FunctionData
ShapleyInfluence
FunctionHow
model
parameter
would
change
if
a
sample
z
is
removed
from
the
training
set?UnderstandingBlack-boxPredictionsviaInfluenceFunctions,
ICML,
2018;
目標(biāo):
Cook,R.D.andWeisberg,S.Residualsandinfluenceinregression.NewYork:ChapmanandHall,1982
所以:
Training
Data
InfluenceHow
model
loss
on
z’
would
change
if
update
on
a
sample
z?PruthiG,LiuF,KaleS,etal.Estimatingtrainingdatainfluencebytracinggradientdescent.NeurIPS,2020First-order
approximation
of
the
above
(assuming
one
step
update
is
small)?Checkpoints
store
the
interim
updates所以:Understanding
the
Learned
ModelLoss
LandscapeDeep
featurest-SNE
plotMaaten
et
al.Visualizingdatausingt-SNE.
JMLR,
2008.https://distill.pub/2016/misread-tsne/?_ga=2.135835192.888864733.1531353600-1779571267.1531353600Understanding
the
Learned
ModelClass-wise
PatternsIntermediate
Layer
Activation
MapActivation/Attention
MapLi
et
al.
NeuralAttentionDistillation:ErasingBackdoorTriggersfromDeepNeuralNetwork,
ICLR
2021;
Zhao
etal.Whatdodeepnetslearn?class-wisepatternsrevealedintheinputspace.arXiv:2101.06898
(2021).One
predictive
pattern
for
each
classWhat
do
deep
nets
learn?Zhao,Shihao,etal."Whatdodeepnetslearn?class-wisepatternsrevealedintheinputspace."
arXiv:2101.06898
(2021).Goal:
understanding
knowledge
learned
by
a
model
of
a
particular
class.Method:
Extract
one
single
pattern
for
one
class,
then
what
this
pattern
would
be?
Other
considerations:
we
need
to
do
this
in
pixel
space,
as
they
are
more
interpretableHow
to
Find
the
Class-wise
Pattern:
a
canvas
imagePatterns
extracted
on
different
canvases
(red
rectangles)Class-wise
Patterns
RevealedPatterns
extracted
on
original,
non-robust,
robust
CIFAR-10and
patterns
of
adversarially
trained
modelsPredictive
power
of
different
sizes
of
patternsInference
MechanismClass
Activation
Map
(Grad-CAM)Guided
BackpropagationSelvaraju
etal.Grad-cam:Visualexplanationsfromdeepnetworksviagradient-basedlocalization.
ICCV
2017.Springenberg
et
al.
StrivingforSimplicity:TheAllConvolutionalNet,
ICLR
2015.Guided
BackpropagationSpringenbergetal.StrivingforSimplicity:TheAllConvolutionalNet,ICLR2015.
/@chinesh4/generalized-way-of-interpreting-cnns-a7d1b0178709ReLU
forward
passReLU
backward
passDeconvolution
for
ReLUGuided
BackpropagationClass
Activation
Mapping
(CAM)Zhou
et
al.LearningDeepFeaturesforDiscriminativeLocalization.CVPR,2016.
/@chinesh4/generalized-way-of-interpreting-cnns-a7d1b0178709GAP:
Global
Average
PoolingGrad-CAMB.Zhou,A.Khosla,L.A.,A.Oliva,andA.Torralba.LearningDeepFeaturesforDiscriminativeLocalization.InCVPR,2016;
/@chinesh4/generalized-way-of-interpreting-cnns-a7d1b0178709Grad-CAM
is
a
generalization
of
CAMCompute
neuron
importance:
Weighted
combination
of
activation
map,
then
interpolation:LIMELocalInterpretableModel-agnosticExplanations(LIME)Ribeiro
et
al.“Whyshoulditrustyou?”Explainingthepredictionsofanyclassifier.“
SIGKDD,
2016./marcotcr/lime
Integrated
GradientsSundararajanM,TalyA,YanQ.Axiomaticattributionfordeepnetworks,
ICML,2017./TianhongDai/integrated-gradient-pytorch
Integrate
the
gradients
along
the
wayCognitive
DistillationHuang
et
al.
DistillingCognitiveBackdoorPatternswithinanImage,
ICLR
2023MaskextractbycognitivedistillationUsefulandnon-usefulfeaturesUsefulfeatures:highlycorrelatedwiththetruelabelinexpectation,
soIfremoved,predictionchangeBackdoortriggerisausefulfeatureNon-usefulfeatures:notcorrelated
with
predictionIfremoved,predictiondoesnotchangeIlyas,Andrew,etal."Adversarialexamplesarenotbugs,theyarefeatures.”NeurIPS2019CognitiveDistillationObjective:distilltheminimalessenceofusefulfeaturesModelTotalVariationLossRandomnoisevectorOriginalimageMaskCognitivePatternCognitiveDistillationDistilledpatternsonbackdoored
samplesxcpmxHow
to
VerifyCognitivePatterns
are
EssentialBackdooredimageBinarizedmask{0,1}OriginalimageConstruct
simplified
backdoor
patterns:Backdoor
Patterns
Can
Be
Made
Simplerxcpmxxbd’Backdoor
Patterns
Can
Be
Made
SimplerSimplified
backdoor
patterns
also
work!L1Norm
Distributionofthe
Distilled
MaskDetect
Backdoor
SamplesAttacks:12backdoorattacksModels:ResNet-18,Pre-ActivationResNet-101,MobileNetv2,VGG-16,Inception,EfficientNet-b0Datasets:CIFAR-10/GTSRB/ImageNetsubsetEvaluation
metric:areaundertheROCcurve(AUROC)Detectionbaselines:Anti-BackdoorLearning(ABL)[2]ActivationClustering(AC)[3]Frequency[4]STRIP[5]SpectralSignatures[6]CD-L(logitslayer)andCD-F(lastactivationlayer)Superb
Detection
PerformanceCelebA
dataset:40binaryfacialattributes(gender,bald,andhaircolor)KnownbiasbetweengenderandblondhairApply
CDinthesamewayasbackdoordetectionSelectsubsetofsampleswithlowL1normExamineattributesofthesubsetCalculatedistributionshiftbetweensubsetandthefulldatasetDiscover
Biases
in
Facial
Recognition
ModelsDiscover
Biases
in
Facial
Recognition
ModelsMasks
distilled
for
predicting
each
attributeDiscover
Biases
in
Facial
Recognition
ModelsGeneralization
MechanismConvergenceGeneralizationDeep
Learning
TheoryConvergenceConvex
(Linear
model)Nonconvex
(DNN)Saddle
pointGeneralizationTraining
time‘Cat’Test
time‘Cat’?Traditional
theory:
simpler
model
is
better,
more
data
is
betterGeneralization
Theory/~ninamf/ML11/lect1117.pdf;/watch?v=zlqQ7VRba2YComponents
of
Generalization
Error
Boundsgeneralizationerror
empiricalerror
hypothesisclasscomplexity
confidencesample
sizeRHS:
for
all
terms,
the
lower
the
better:
small
training
errorsimpler
model
classmore
samples
less
confidenceGeneralization
TheoryZhang
et
al.
Understandingdeeplearningrequiresrethinkinggeneralization.
ICLR
2017.Small
training
error≠low
generalization
errorZero
training
error
was
achieved
on
purely
random
labels
(meaningless
learning)0
training
error
vs.
0.9
test
errorList
of
Existing
TheoriesRademacher
Complexity
bounds
(Bartlett
et
al.
2017)PAC-Bayes
bounds
(Dziugaite
and
Roy
2017)Information
bottleneck
(Tishby
and
Zaslavsky
2015)Neural
tangent
kernel/Lazy
training
(Jacot
et
al.
2018)Mean-field
analysis
(Chizat
and
Bach
2018)Doule
Descent
(Belkin
et
al.
2019)Entropy
SGD
(Chaudhari
et
al.
2019)/watch?v=zlqQ7VRba2YA
few
interesting
questions:Should
we
consider
the
role
of
data
in
generalization
analysis?Should
representation
quality
appear
in
the
generalization
bound?Generalization
is
about
math
(the
function
of
the
model)
or
knowledge?How
to
visualize
generalization?
Existing
approachestest
errorVisualization:
loss
landscape,
prediction
attribution,
etc.Training
->
test:
distribution
shift,
out-of-distribution
analysisNoisy
labels
in
test
data
–
questioning
data
quality
and
reliable
evaluationThe
remaining
questions:
how
generalization
happens?Math≠KnowledgeComputation
=
finding
patterns
or
understanding
the
underlying
knowledgeWhat
is
the
relation
of
computational
generalization
to
human
behavior?Cognitive
MechanismOpenAI
reveals
the
multimodal
neurons
in
CLIP/blog/multimodal-neurons/;/blog/clip/Cognitive
MechanismRitter
et
al.
CognitivePsychologyforDeepNeuralNetworks:AShapeBiasCaseStudy,
ICML,
2017cognitivepsychology
inspired
evaluation
of
DNNsshape
match
=
prob
means
shape
biasCognitive
MechanismGeirhos,Robert,etal."Shortcutlearningindeepneuralnetworks."
NatureMachineIntelligence
2.11(2020):665-673.DeepneuralnetworkssolveproblemsbytakingshortcutsCognitive
MechanismRajalingham,Rishi,etal.“Large-scale,high-resolutioncomparisonofthecorevisualobjectrecognitionbehaviorofhumans,monkeys,andstate-of-the-artdeepartificialneuralnetworks.”
JournalofNeuroscience
38.33(2018):7255-7269.
Rajalingham,Rishi,KailynSchmidt,andJamesJ.DiCarlo."Comparisonofobjectrecognitionbehaviorinhumanandmonkey."
JournalofNeuroscience
35.35(2015):12127-121
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《修改DIY飾品坊》課件
- 醫(yī)院財(cái)務(wù)自糾報(bào)告范文
- 影像學(xué)診斷兒童肝膽疾病
- 2025年西安貨運(yùn)從業(yè)資格證模擬考試下載什么軟件
- 2025年遵義貨車從業(yè)資格證考什么
- 教師硬筆書法培訓(xùn)講座
- 2025年安徽貨運(yùn)從業(yè)資格證技巧
- 《故宮博物院公開》課件
- 《魚類的營(yíng)養(yǎng)價(jià)值》課件
- 《保障安全發(fā)展》課件
- 9《知法守法 依法維權(quán)》(教學(xué)設(shè)計(jì))部編版道德與法治六年級(jí)上冊(cè)
- 山東省機(jī)場(chǎng)管理集團(tuán)濟(jì)南國(guó)際機(jī)場(chǎng)股份有限公司招聘筆試題庫(kù)2024
- 2024年全國(guó)新能源汽車關(guān)鍵技術(shù)技能大賽考試題庫(kù)500題
- NB-T 10641-2021 電動(dòng)汽車非車載充電機(jī)現(xiàn)場(chǎng)檢測(cè)儀
- 2024-2030年中國(guó)旋轉(zhuǎn)變壓器行業(yè)市場(chǎng)深度分析及前景趨勢(shì)與投資研究報(bào)告
- 誠(chéng)意金合同協(xié)議模板
- 創(chuàng)新創(chuàng)業(yè)實(shí)戰(zhàn)案例解析智慧樹知到期末考試答案章節(jié)答案2024年?yáng)|北農(nóng)業(yè)大學(xué)
- AQ 1083-2011 煤礦建設(shè)安全規(guī)范 (正式版)
- 醫(yī)院醫(yī)學(xué)科研管理制度
- 求職英語(yǔ)完整版本
- 主持人合同協(xié)議書范文模板
評(píng)論
0/150
提交評(píng)論