2025屆吉林長白山第一高級中學高二上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第1頁
2025屆吉林長白山第一高級中學高二上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第2頁
2025屆吉林長白山第一高級中學高二上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第3頁
2025屆吉林長白山第一高級中學高二上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第4頁
2025屆吉林長白山第一高級中學高二上數(shù)學期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆吉林長白山第一高級中學高二上數(shù)學期末質量跟蹤監(jiān)視試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角A,B,C所對的邊分別為a,b,c,已知,則的面積為()A. B.C. D.2.函數(shù)的遞增區(qū)間是()A. B.和C. D.和3.拋物線的準線方程為()A B.C. D.4.雙曲線的漸近線方程為()A. B.C. D.5.已知數(shù)列滿足,則()A. B.1C.2 D.46.等差數(shù)列的通項公式,數(shù)列,其前項和為,則等于()A. B.C. D.7.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.8.空氣質量指數(shù)大小分為五級指數(shù)越大說明污染的情況越嚴重,對人體危害越大,指數(shù)范圍在:,,,,分別對應“優(yōu)”、“良”、“輕中度污染”、“中度重污染”、“重污染”五個等級,如圖是某市連續(xù)14天的空氣質量指數(shù)趨勢圖,下面說法錯誤的是().A.這14天中有4天空氣質量指數(shù)為“良”B.從2日到5日空氣質量越來越差C.這14天中空氣質量的中位數(shù)是103D.連續(xù)三天中空氣質量指數(shù)方差最小是9日到11日9.在平面內,A,B是兩個定點,C是動點,若,則點C的軌跡為()A.圓 B.橢圓C.拋物線 D.直線10.已知直線與直線平行,則實數(shù)a的值為()A.1 B.C.1或 D.11.若用面積為48的矩形ABCD截某圓錐得到一個橢圓,且該橢圓與矩形ABCD的四邊都相切.設橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.12.若空間中n個不同的點兩兩距離都相等,則正整數(shù)n的取值A.至多等于3 B.至多等于4C.等于5 D.大于5二、填空題:本題共4小題,每小題5分,共20分。13.如圖,棱長為1的正方體,點沿正方形按的方向作勻速運動,點沿正方形按的方向以同樣的速度作勻速運動,且點分別從點A與點同時出發(fā),則的中點的軌跡所圍成圖形的面積大小是________.14.已知等差數(shù)列的前項和為,則數(shù)列的前2022項的和為___________.15.已知等比數(shù)列中,則q=___16.拋物線的焦點坐標為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,動點到點的距離等于點到直線的距離.(1)求動點的軌跡方程;(2)記動點的軌跡為曲線,過點的直線與曲線交于兩點,在軸上是否存在一點,使若存在,求出點的坐標;若不存在,請說明理由.18.(12分)某市對新形勢下的中考改革工作進行了全面的部署安排.中考錄取科目設置分為固定賦分科目和非固定賦分科目,固定賦分科目(語文、數(shù)學、英語、物理、體育與健康)按卷面分計算;非固定賦分科目(化學、生物、道德與法治、歷史、地理)按學生在該學科中的排名進行等級賦分,即根據(jù)改革方案,將每門等級考試科目中考生的原始成績從高到低分為A,,,,,,,共個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為,,,,,,,.等級考試科目成績計入考生總成績時,將A至等級內的考生原始成績,依照等比例轉換法則,分別轉換到,,,,,,,八個分數(shù)區(qū)間,得到考生的等級成績.該市學生的中考化學原始成績制成頻率分布直方圖如圖所示:(1)求圖中的值;(2)估計該市學生中考化學原始成績不少于多少分才能達到等級及以上(含等級)?(3)由于中考改革后學生各科原始成績不再返回學校,只告知各校參考學生的各科平均成績及方差.已知某校初三共有名學生參加中考,為了估計該校學生的化學原始成績達到等級及以上(含等級)的人數(shù),將該校學生的化學原始成績看作服從正態(tài)分布,并用這名學生的化學平均成績作為的估計值,用這名學生化學成績的方差作為的估計值,計算人數(shù)(結果保留整數(shù))附:,,.19.(12分)已知為數(shù)列的前n項和,,且,,其中為常數(shù).(1)求證:數(shù)列為等差數(shù)列;(2)是否存在,使得是等差數(shù)列?并說明理由.20.(12分)如圖,在四棱錐中,,,,,為中點,且平面.(1)求點到平面的距離;(2)線段上是否存在一點,使平面?如果不存在,請說明理由;如果存在,求的值.21.(12分)已知函數(shù).(1)當時,求的單調區(qū)間與極值;(2)若在上有解,求實數(shù)a的取值范圍.22.(10分)在平面直角坐標系xOy中,已知橢圓E:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為.點P是橢圓上的一動點,且P在第一象限.記的面積為S,當時,.(1)求橢圓E的標準方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點M,N,記和的面積分別為S1和S2.(i)求證:存在常數(shù)λ,使得成立;(ii)求S2-S1的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由余弦定理計算求得角,根據(jù)三角形面積公式計算即可得出結果.【詳解】由余弦定理得,,∴,∴,故選:A2、C【解析】求導后,由可解得結果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導數(shù)求函數(shù)的增區(qū)間,屬于基礎題.3、D【解析】根據(jù)拋物線方程求出,進而可得焦點坐標以及準線方程.【詳解】由可得,所以焦點坐標為,準線方程為:,故選:D.4、B【解析】把雙曲線的標準方程中的1換成0,可得其漸近線的方程【詳解】雙曲線的漸近線方程是,即,故選B【點睛】本題考查了雙曲線的標準方程與簡單的幾何性質等知識,屬于基礎題5、B【解析】根據(jù)遞推式以及迭代即可.【詳解】由,得,,,,,,.故選:B6、D【解析】根據(jù)裂項求和法求得,再計算即可.【詳解】解:由題意得====所以.故選:D7、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結果.【詳解】.故選:D8、C【解析】根據(jù)題圖分析數(shù)據(jù),對選項逐一判斷【詳解】對于A,14天中有1,3,12,13共4日空氣質量指數(shù)為“良”,故A正確對于B,從2日到5日空氣質量指數(shù)越來越高,故空氣質量越來越差,故B正確對于C,14個數(shù)據(jù)中位數(shù)為:,故C錯誤對于D,觀察折線圖可知D正確故選:C9、A【解析】首先建立平面直角坐標系,然后結合數(shù)量積定義求解其軌跡方程即可.【詳解】設,以AB中點為坐標原點建立如圖所示的平面直角坐標系,則:,設,可得:,從而:,結合題意可得:,整理可得:,即點C的軌跡是以AB中點為圓心,為半徑的圓.故選:A.【點睛】本題主要考查平面向量及其數(shù)量積的坐標運算,軌跡方程的求解等知識,意在考查學生的轉化能力和計算求解能力.10、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經檢驗可知符合題意.故選:A11、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長分別為,由矩形面積為48,得,對于選項B,D由于,不符合條件,不正確.對于選項A,,滿足題意.對于選項C,不正確.故選:A.12、B【解析】先考慮平面上的情況:只有三個點的情況成立;再考慮空間里,只有四個點的情況成立,注意運用外接球和三角形三邊的關系,即可判斷解:考慮平面上,3個點兩兩距離相等,構成等邊三角形,成立;4個點兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個點兩兩距離相等,構成一個正四面體,成立;若n>4,由于任三點不共線,當n=5時,考慮四個點構成的正四面體,第五個點,與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點評:本題考查空間幾何體的特征,主要考查空間兩點的距離相等的情況,注意結合外接球和三角形的兩邊與第三邊的關系,屬于中檔題和易錯題二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出符合要求的圖形,觀察得到軌跡是菱形,并進行充分性和必要性兩方面的證明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進行證明:菱形EFGC的周界即為動線段PQ的中點H的軌跡,首先證明:如果點H是動線段PQ的中點,那么點H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個定角的兩邊上,不失一般性,設P從B到C,而Q同時從到C,由于速度相同,所以PQ必平行于,故PQ的中點H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設P從A到B,同時Q從到,由于速度相同,則,由于H為PQ的中點,連接并延長,交底面ABCD于點T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點一定在菱形EFGC的周界上;下面證明:如果點H在菱形EFGC的周界上,則點H必定是符合條件的線段的中點.也分兩種情況進行證明:(1)H在CG或CE上,過點H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質可得:PH=QH,即H是PQ的中點,同時可證:BP=(或BQ=DP),因此P、Q符合題設條件(2)H在EF或FG上,不失一般性,設H在FG上,連接并延長,交平面AC于點T,顯然T在AC上,過T作TP∥CB于點P,則TP∥,在平面上,連接PH并延長,交于點Q,在三角形中,G是的中點,∥AC,則H是的中點,于是,從而有,又因為TP∥CB,,所以,從而,因此P,Q符合題設條件.由(1)(2),如果H是菱形EFGC周界上的任一點,則H必是符合題設條件的動線段PQ的中點,證畢.因為四邊形為菱形,其中,所以邊長為且,為等邊三角形,,所以面積.故答案為:【點睛】對于立體幾何軌跡問題,要畫出圖形,并要善于觀察,利用所學的立體幾何方面的知識,大膽猜測,小心驗證,對于多種情況的,要畫出相應的圖形,注意分類討論.14、【解析】先設等差數(shù)列的公差為,根據(jù)題中條件,求出首項和公差,得出前項和,再由裂項相消的方法,即可求出結果.【詳解】設等差數(shù)列的公差為,因為,,所以,解得,因此,所以,所以數(shù)列的前2022項的和為.故答案:.15、3【解析】根據(jù)等比數(shù)列的性質求得,再根據(jù)等比數(shù)列的通項公式求得答案.【詳解】等比數(shù)列中,故,,所以,故答案為:316、【解析】化成拋物線的標準方程即可.【詳解】由題意知,,則焦點坐標為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)利用拋物線的定義即求;(2)由題可設直線的方程為,利用韋達定理法結合條件可得,即得.【小問1詳解】因為動點到點的距離等于點到直線的距離,所以動點到點的距離和它到直線的距離相等,所以點的軌跡是以為焦點,以直線為準線的拋物線,設拋物線方程為,由,得,所以動點的軌跡方程為.【小問2詳解】由題意可知,直線的斜率不為0,故設直線的方程為,.聯(lián)立,得,恒成立,由韋達定理,得,,假設存在一點,滿足題意,則直線的斜率與直線的斜率滿足,即,所以,所以解得,所以存在一點,滿足,點的坐標為.18、(1)(2)85(3)23【解析】(1)根據(jù)所有矩形面積之和等于1可得;(2)先根據(jù)矩形面積之和判斷達到等級的最低分數(shù)為x所在區(qū)間,然后根據(jù)矩形面積之和等于0.9可得;(3)由題知,所以由可得.【小問1詳解】由得【小問2詳解】由題意可知,要使等級達到等級及以上,則成績需超過的學生.因為,記達到等級的最低分數(shù)為x,則,則由,解得所以該市學生中考化學原始成績不少于85分才能達到等級及以上.【小問3詳解】由題知,因為所以故該校學生的化學原始成績達到等級及以上的人數(shù)大約為人.19、(1)詳見解析;(2)存在時是等差數(shù)列,詳見解析.【解析】(1)利用與的關系可得,再結合條件即證;(2)由題可得,,若是等差數(shù)列,可得,進而可求數(shù)列的通項公式,即證.【小問1詳解】∵,∴,∴,又,∴,∴,∴數(shù)列為等差數(shù)列;【小問2詳解】∵,,∴,又,∴,若是等差數(shù)列,則,即,解得,當時,由,∴數(shù)列的奇數(shù)項構成的數(shù)列為首項為1,公差為2的等差數(shù)列,∴,即,為奇數(shù),∴數(shù)列的偶數(shù)項構成的數(shù)列為首項為2,公差為2的等差數(shù)列,∴,即,為偶數(shù),綜上可得,當時,,,故存在時,使數(shù)列是等差數(shù)列.20、(1)(2)線段上存在一點,當時,平面.【解析】(1)設點到平面的距離為,則由,由體積法可得答案.(2)由(1)連接,可得則從而平面,過點作交于點,連接,可證明平面平面,從而可得出答案.【小問1詳解】由,,為中點,則由平面,平面,則又,且,則平面又,則平面,且都在平面內所以所以,取的中點,連接,則,所以,所以所以所以則設點到平面的距離為,則由即,即【小問2詳解】線段上是否存在一點,使平面.由(1)連接,則四邊形為平行四邊形,則過點作交于,則為中點,則為的中點,即又平面,則平面過點作交于點,連接,則,即又平面,所以平面又,所以平面平面又平面,所以平面所以線段上存在一點,當時,平面.21、(1)在上單調遞減,在上單調遞增,函數(shù)有極小值,無極大值(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論