版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省哈爾濱師范大學(xué)附中2025屆高二上數(shù)學(xué)期末統(tǒng)考試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.甲,乙、丙、丁、戊共5人隨機(jī)地排成一行,則甲、乙相鄰,丙、丁不相鄰的概率為()A. B.C. D.2.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.3.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=04.已知是空間的一個(gè)基底,若,,若,則()A. B.C.3 D.5.雙曲線的離心率為,則其漸近線方程為A. B.C. D.6.已知方程表示的曲線是焦點(diǎn)在軸上的橢圓,則的取值范圍A. B.C. D.7.若復(fù)數(shù)滿足,則復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的軌跡圍成圖形的面積等于()A. B.C. D.8.魯班鎖運(yùn)用了中國(guó)古代建筑中首創(chuàng)的榫卯結(jié)構(gòu),相傳由春秋時(shí)代各國(guó)工匠魯班所作,是由六根內(nèi)部有槽的長(zhǎng)方形木條,按橫豎立三方向各兩根凹凸相對(duì)咬合一起,形成的一個(gè)內(nèi)部卯榫的結(jié)構(gòu)體.魯班鎖的種類各式各樣,千奇百怪.其中以最常見的六根和九根的魯班鎖最為著名.下圖1是經(jīng)典的六根魯班鎖及六個(gè)構(gòu)件的圖片,下圖2是其中的一個(gè)構(gòu)件的三視圖(圖中單位:mm),則此構(gòu)件的表面積為()A. B.C. D.9.下列結(jié)論正確的個(gè)數(shù)為()①若,則;②若,則;③若,則;④若,則A.4 B.3C.2 D.110.已知拋物線,為坐標(biāo)原點(diǎn),以為圓心的圓交拋物線于、兩點(diǎn),交準(zhǔn)線于、兩點(diǎn),若,,則拋物線方程為()A. B.C. D.11.若復(fù)數(shù)z滿足(其中為虛數(shù)單位),則()A. B.C. D.12.若正實(shí)數(shù)、滿足,且不等式有解,則實(shí)數(shù)取值范圍是()A.或 B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,E,F(xiàn)分別是三棱錐的棱AD,BC的中點(diǎn),,,,則異面直線AB與EF所成的角為______.14.若恒成立,則______.15.已知向量,,若向量與向量平行,則實(shí)數(shù)______16.曲線的長(zhǎng)度為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處的切線方程為.(1)求的解析式;(2)求函數(shù)圖象上的點(diǎn)到直線的距離的最小值.18.(12分)已知等差數(shù)列中,,.(1)求的通項(xiàng)公式;(2)求的前項(xiàng)和的最大值.19.(12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點(diǎn)C到平面的距離;(2)線段上是否存在點(diǎn)F,使與平面所成角正弦值為,若存在,求出,若不存在,說明理由.20.(12分)從某居民區(qū)隨機(jī)抽取2021年的10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,計(jì)算得,,,(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;(2)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);(3)利用(1)中的回歸方程,分析2021年該地區(qū)居民月收入與月儲(chǔ)蓄之間的變化情況,并預(yù)測(cè)當(dāng)該居民區(qū)某家庭月收入為7千元,該家庭的月儲(chǔ)蓄額.附:線性回歸方程系數(shù)公式中,,,其中,為樣本平均值21.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點(diǎn)上的動(dòng)點(diǎn).(1)當(dāng)時(shí),求證平面;(2)當(dāng)直線與平面所成角的正弦值為時(shí),求二面角的余弦值.22.(10分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨(dú)立的,成活率為p,設(shè)為成活棕櫚樹的株數(shù),數(shù)學(xué)期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補(bǔ)種,求需要補(bǔ)種棕櫚樹的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】先求出所有的基本事件,再求出甲、乙相鄰,丙、丁不相鄰的基本事件,根據(jù)古典概型的概率公式求解即可【詳解】甲,乙、丙、丁、戊共5人隨機(jī)地排成一行有種方法,甲、乙相鄰,丙、丁不相鄰的排法為先將甲、乙捆綁在一起,再與戊進(jìn)行排列,然后丙、丁從3個(gè)空中選2個(gè)空插入,則共有種方法,所以甲、乙相鄰,丙、丁不相鄰的概率為,故選:A2、A【解析】.本題選擇A選項(xiàng).3、D【解析】設(shè)切點(diǎn)為,則切線的斜率為,然后根據(jù)條件可得的值,然后可得答案.【詳解】設(shè)切點(diǎn)為,因?yàn)?,所以切線的斜率為因?yàn)榍€f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D4、C【解析】由,可得存在實(shí)數(shù),使,然后將代入化簡(jiǎn)可求得結(jié)果【詳解】,,因,所以存在實(shí)數(shù),使,所以,所以,所以,得,,所以,故選:C5、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:因?yàn)闈u近線方程為,所以漸近線方程為,選A.點(diǎn)睛:已知雙曲線方程求漸近線方程:.6、A【解析】根據(jù)條件,列出滿足條件的不等式,求的取值范圍.【詳解】曲線表示交點(diǎn)在軸的橢圓,,解得:.故選A【點(diǎn)睛】本題考查根據(jù)橢圓的焦點(diǎn)位置求參數(shù)的取值范圍,意在考查基本概念,屬于基礎(chǔ)題型.7、D【解析】利用復(fù)數(shù)的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復(fù)數(shù)滿足,表示復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的軌跡是以點(diǎn)為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D8、B【解析】由三視圖可知,該構(gòu)件是長(zhǎng)為100,寬為20,高為20的長(zhǎng)方體的上面的中間部分去掉一個(gè)長(zhǎng)為40,寬為20,高為10的小長(zhǎng)方體的一個(gè)幾何體,進(jìn)而求出表面積即可.【詳解】由三視圖可知,該構(gòu)件是長(zhǎng)為100,寬為20,高為20的長(zhǎng)方體的上面的中間部分去掉一個(gè)長(zhǎng)為40,寬為20,高為10的小長(zhǎng)方體的一個(gè)幾何體,如下圖所示,其表面積為:.故選:B.【點(diǎn)睛】本題考查幾何體的表面積的求法,考查三視圖,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.9、D【解析】根據(jù)常數(shù)函數(shù)的導(dǎo)數(shù)為0,可判斷①;根據(jù)冪函數(shù)的求導(dǎo)公式,可判斷②;根據(jù)指數(shù)函數(shù)以及對(duì)數(shù)函數(shù)的求導(dǎo)公式,可判斷③④.【詳解】由得:,故①錯(cuò)誤;對(duì)于,,故,故②正確;對(duì)于,則,故③錯(cuò)誤;對(duì)于,則,故④錯(cuò)誤,故選:D10、C【解析】設(shè)圓的半徑為,根據(jù)已知條件可得出關(guān)于的方程,求出正數(shù)的值,即可得出拋物線的方程.【詳解】設(shè)圓的半徑為,拋物線的準(zhǔn)線方程為,由勾股定理可得,因?yàn)?,將代入拋物線方程得,可得,不妨設(shè)點(diǎn),則,所以,,解得,因此,拋物線的方程為.故選:C.11、B【解析】利用復(fù)數(shù)的除法化簡(jiǎn)復(fù)數(shù),利用復(fù)數(shù)的模長(zhǎng)公式可求得結(jié)果.【詳解】,因此,.故選:B12、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關(guān)于實(shí)數(shù)的不等式,解之即可.【詳解】因?yàn)檎龑?shí)數(shù)、滿足,則,即,所以,,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,即的最小值為,因?yàn)椴坏仁接薪?,則,即,即,解得或.故選:A.II卷二、填空題:本題共4小題,每小題5分,共20分。13、【解析】取的中點(diǎn),連結(jié),由分別為的中點(diǎn),可得(或其補(bǔ)角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點(diǎn),連結(jié)由分別為的中點(diǎn),則所以(或其補(bǔ)角)為異面直線AB與EF所成的角由分別是的中點(diǎn),則,又在中,,則所以,又,所以在直角中,故答案為:14、1【解析】利用導(dǎo)數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當(dāng)時(shí),遞減;當(dāng)時(shí),遞增;所以,即在上恒成立,令,則,當(dāng)時(shí),遞增;當(dāng)時(shí),遞減;所以,綜上,.故答案為:115、2【解析】先求出的坐標(biāo),進(jìn)而根據(jù)空間向量平行的坐標(biāo)運(yùn)算求得答案.【詳解】由題意,,因?yàn)?,所以存在?shí)數(shù)使得.故答案為:2.16、【解析】曲線的圖形是:以原點(diǎn)為圓心,以2為半徑的圓的左半圓,進(jìn)而可求出結(jié)果.【詳解】解:由得,所以曲線()的圖形是:以原點(diǎn)為圓心,以2為半徑的圓的左半圓,∴曲線()的長(zhǎng)度是,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題可得,然后利用導(dǎo)數(shù)的幾何意義即求;(2)由題可得切點(diǎn)到直線的距離最小,即得.【小問1詳解】∵函數(shù),∴的定義域?yàn)?,,∴在處切線的斜率為,由切線方程可知切點(diǎn)為,而切點(diǎn)也在函數(shù)圖象上,解得,∴的解析式為;【小問2詳解】由于直線與直線平行,直線與函數(shù)在處相切,所以切點(diǎn)到直線的距離最小,最小值為,故函數(shù)圖象上的點(diǎn)到直線的距離的最小值為.18、(1);(2)30.【解析】(1)設(shè)出等差數(shù)列的公差,由已知列式求得公差,進(jìn)一步求出首項(xiàng),代入等差數(shù)列的通項(xiàng)公式求數(shù)列的通項(xiàng)公式;(2)利用等差數(shù)列求和公式求和,再利用二次函數(shù)求得最值即可.【詳解】解:(1)由題意得,數(shù)列公差為,則解得:,∴(2)由(1)可得,∴∵,∴當(dāng)或時(shí),取得最大值【點(diǎn)睛】本題考查利用基本量求解等差數(shù)列的通項(xiàng)公式,以及前n項(xiàng)和及最值,屬基礎(chǔ)題19、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標(biāo)系,求得平面向量的法向量和相應(yīng)點(diǎn)的坐標(biāo),利用點(diǎn)面距離公式即可求得點(diǎn)面距離(2)假設(shè)滿足題意的點(diǎn)存在且滿足,由題意得到關(guān)于的方程,解方程即可確定滿足題意的點(diǎn)是否存在【小問1詳解】解:如圖所示,取中點(diǎn),連結(jié),,因?yàn)槿切问堑妊苯侨切?,所以,因?yàn)槊婷妫婷婷?,所以平面,又因?yàn)椋运倪呅问蔷匦?,可得,則,建立如圖所示的空間直角坐標(biāo)系,則:據(jù)此可得,設(shè)平面的一個(gè)法向量為,則,令可得,從而,又,故求點(diǎn)到平面的距離【小問2詳解】解:假設(shè)存在點(diǎn),,滿足題意,點(diǎn)在線段上,則,即:,,,,,據(jù)此可得:,,從而,,,,設(shè)與平面所成角所成的角為,則,整理可得:,解得:或(舍去)據(jù)此可知,存在滿足題意的點(diǎn),點(diǎn)為的中點(diǎn),即20、(1)=0.3x-0.4(2)正相關(guān)(3)1.7千元【解析】(1)由題意得到n=10,求得,進(jìn)而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【小問1詳解】由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.【小問2詳解】因?yàn)?,所以變量y的值隨x的值增加而增加,故x與y之間是正相關(guān).【小問3詳解】將x=7代入回歸方程可以預(yù)測(cè)該家庭的月儲(chǔ)蓄為=0.3×7-0.4=1.7(千元).21、(1)證明見解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過作于,以為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過作于,則在中,,,,以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,,,,,設(shè)向量為平面的一個(gè)法向量,則由,有,令,得;記直線與平面所成的角為,則,解得,此時(shí);設(shè)向量為平面的一個(gè)法向量則由,有,令,得;∴二面角的余弦值為.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版模具生產(chǎn)質(zhì)量控制合同4篇
- 2025年偵探領(lǐng)英和解合同
- 二零二五版美容院線上線下營(yíng)銷推廣合同4篇
- 二零二五年度面粉產(chǎn)品食品安全認(rèn)證服務(wù)合同4篇
- 2025年定制旅行合同
- 2025年代理商品授權(quán)合同
- 2025年度個(gè)人委托代繳工傷保險(xiǎn)合同范本4篇
- 2025年度影視劇組演員聘用合同模板4篇
- 2025年度派遣人力資源管理顧問全面支持合同4篇
- 2025年長(zhǎng)沙星沙供水工程有限公司招聘筆試參考題庫(kù)含答案解析
- 電纜擠塑操作手冊(cè)
- 浙江寧波鄞州區(qū)市級(jí)名校2025屆中考生物全真模擬試卷含解析
- 2024-2025學(xué)年廣東省深圳市南山區(qū)監(jiān)測(cè)數(shù)學(xué)三年級(jí)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析
- IATF16949基礎(chǔ)知識(shí)培訓(xùn)教材
- 【MOOC】大學(xué)生創(chuàng)新創(chuàng)業(yè)知能訓(xùn)練與指導(dǎo)-西北農(nóng)林科技大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 勞務(wù)派遣公司員工考核方案
- 基礎(chǔ)生態(tài)學(xué)-7種內(nèi)種間關(guān)系
- 2024年光伏農(nóng)田出租合同范本
- 《阻燃材料與技術(shù)》課件 第3講 阻燃基本理論
- 2024-2030年中國(guó)黃鱔市市場(chǎng)供需現(xiàn)狀與營(yíng)銷渠道分析報(bào)告
- 新人教版九年級(jí)化學(xué)第三單元復(fù)習(xí)課件
評(píng)論
0/150
提交評(píng)論