版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江西省贛州市石城縣石城中學數(shù)學高二上期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列中,,,則當取最大值時,的值為A.6 B.7C.6或7 D.不存在2.下面四個條件中,使成立的充分而不必要的條件是A. B.C. D.3.數(shù)學美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學的真實美.平面直角坐標系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點間的距離不超過;③若是曲線上任意一點,則的最小值是其中正確結(jié)論的個數(shù)為()A. B.C. D.4.如圖,在平行六面體中,()A. B.C. D.5.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.6.如圖,是對某位同學一學期次體育測試成績(單位:分)進行統(tǒng)計得到的散點圖,關(guān)于這位同學的成績分析,下列結(jié)論錯誤的是()A.該同學的體育測試成績總的趨勢是在逐步提高,且次測試成績的極差超過分B.該同學次測試成績的眾數(shù)是分C.該同學次測試成績的中位數(shù)是分D.該同學次測試成績與測試次數(shù)具有相關(guān)性,且呈正相關(guān)7.已知各項都為正數(shù)的等比數(shù)列,其公比為q,前n項和為,滿足,且是與的等差中項,則下列選項正確的是()A. B.C D.8.已知O為坐標原點,=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當取得最小值時,點Q的坐標為()A. B.C. D.9.《周髀算經(jīng)》中有這樣一個問題:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,自冬至日起,其日影長依次成等差數(shù)列,立春當日日影長為9.5尺,立夏當日日影長為2.5尺,則冬至當日日影長為()A.12.5尺 B.13尺C.13.5尺 D.14尺10.已知拋物線,過拋物線的焦點作軸的垂線,與拋物線交于、兩點,點的坐標為,且為直角三角形,則以直線為準線的拋物線的標準方程為()A. B.C. D.11.已知等差數(shù)列的公差,記該數(shù)列的前項和為,則的最大值為()A.66 B.72C.132 D.19812.已知點,則直線的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的一條漸近線被圓所截得的弦長為2,則該雙曲線的實軸長為______.14.若方程表示的曲線是圓,則實數(shù)的k取值范圍是___________.15.2021年7月24日,在東京奧運會女子10米氣步槍決賽中,中國選手楊倩以251.8環(huán)的總成績奪得金牌,為中國代表團摘得本屆奧運會首金.已知楊倩其中5次射擊命中的環(huán)數(shù)如下:10.8,10.6,10.6,10.7,9.8,則這組數(shù)據(jù)的方差為______16.設拋物線C:的焦點為F,準線l與x軸的交點為M,P是C上一點,若|PF|=5,則|PM|=__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某消費者協(xié)會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務活動,著力提升消費者維權(quán)意識,組織方從參加活動的群眾中隨機抽取120名群眾,按年齡將這120名群眾分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.(1)求圖中m的值;(2)估算這120名群眾的年齡的中位數(shù)(結(jié)果精確到0.1);(3)已知第1組群眾中男性有2人,組織方要從第1組中隨機抽取2名群眾組成維權(quán)志愿者服務隊,求恰有一名女性的概率.18.(12分)已知數(shù)列是遞增的等比數(shù)列,滿足,(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和19.(12分)已知點,直線,圓.(1)若連接點與圓心的直線與直線垂直,求實數(shù)的值;(2)若直線與圓相交于兩點,且弦的長為,求實數(shù)的值20.(12分)已知數(shù)列滿足且(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和為.21.(12分)某公司有員工人,對他們進行年齡和學歷情況調(diào)查,其結(jié)果如下:現(xiàn)從這名員工中隨機抽取一人,設“抽取的人具有本科學歷”,“抽取的人年齡在歲以下”,試求:(1);(2);(3).22.(10分)已知各項均為正數(shù)的等差數(shù)列滿足,且,,構(gòu)成等比數(shù)列的前三項.(1)求數(shù)列,的通項公式;(2)設,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設等差數(shù)列的公差為∵∴∴∴∵∴當取最大值時,的值為或故選C2、A【解析】由,但無法得出,A滿足;由、均無法得出,不滿足“充分”;由,不滿足“不必要”.考點:不等式性質(zhì)、充分必要性.3、C【解析】結(jié)合已知條件寫出曲線的解析式,進而作出圖像,對于①,通過圖像可知,所求面積為四個半圓和一個正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對于②,根據(jù)圖像求出曲線上的任意兩點間的距離的最大值即可判斷;對于③,將問題轉(zhuǎn)化為點到直線的距離,然后利用圓上一點到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點間的距離的最大值為兩個半徑與正方形的邊長之和,即,故②錯誤;因為到直線的距離為,所以,當最小時,易知在曲線的第一象限內(nèi)的圖像上,因為曲線的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.4、B【解析】由空間向量的加法的平行四邊形法則和三角形法則,可得所求向量【詳解】連接,可得,又,所以故選:B.5、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A6、C【解析】根據(jù)給定的散點圖,逐一分析各個選項即可判斷作答.【詳解】對于A,由散點圖知,8次測試成績總體是依次增大,極差為,A正確;對于B,散點圖中8個數(shù)據(jù)的眾數(shù)是48,B正確;對于C,散點圖中的8個數(shù)由小到大排列,最中間兩個數(shù)都是48,則次測試成績的中位數(shù)是分,C不正確;對于D,散點圖中8個點落在某條斜向上的直線附近,則次測試成績與測試次數(shù)具有相關(guān)性,且呈正相關(guān),D正確.故選:C7、D【解析】根據(jù)題意求得,即可判斷AB,再根據(jù)等比數(shù)列的通項公式即可判斷C;再根據(jù)等比數(shù)列前項和公式即可判斷D.【詳解】解:因為各項都為正數(shù)的等比數(shù)列,,所以,又因是與的等差中項,所以,即,解得或(舍去),故B錯誤;所以,故A錯誤;所以,故C錯誤;所以,故D正確.故選:D.8、C【解析】設,用表示出,求得的表達式,結(jié)合二次函數(shù)的性質(zhì)求得當時,取得最小值,從而求得點的坐標.【詳解】設,則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當λ=時,取得最小值,此時==,即點Q的坐標為.故選:C9、B【解析】設十二節(jié)氣自冬至日起的日影長構(gòu)成的等差數(shù)列為,利用等差數(shù)列的性質(zhì)即可求解.【詳解】設十二節(jié)氣自冬至日起的日影長構(gòu)成的等差數(shù)列為,則立春當日日影長為,立夏當日日影長為,故所以冬至當日日影長為.故選:B10、B【解析】設點位于第一象限,求得直線的方程,可得出點的坐標,由拋物線的對稱性可得出,進而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準線的拋物線的標準方程.【詳解】設點位于第一象限,直線的方程為,聯(lián)立,可得,所以,點.為等腰直角三角形,由拋物線的對稱性可得出,則直線的斜率為,即,解得.因此,以直線為準線的拋物線的標準方程為.故選:B.【點睛】本題考查拋物線標準方程的求解,考查計算能力,屬于中等題.11、A【解析】根據(jù)等差數(shù)列的公差,求得其通項公式求解.【詳解】因為等差數(shù)列的公差,所以,則,所以,由,得,所以或12時,該數(shù)列的前項和取得最大值,最大值為,故選:A12、A【解析】由兩點坐標,求出直線的斜率,利用,結(jié)合傾斜角的范圍即可求解.【詳解】設直線AB的傾斜角為,因為,所以直線AB的斜率,即,因為,所以.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】求得雙曲線的一條漸近線方程,求得圓心和半徑,運用點到直線的距離公式和弦長公式,可得a,b的關(guān)系,即可得到的值【詳解】一漸近線x+ay=0,被圓(x-2)2+y2=4所截弦長為2,所以圓心到直線距為,即,a=1.所以雙曲線的實軸長為2.故答案為:14、【解析】根據(jù)二元二次方程表示圓的條件求解【詳解】由題意,故答案為:15、128【解析】先求均值,再由方差公式計算【詳解】由已知,所以,故答案為:16、【解析】根據(jù)拋物線的性質(zhì)及拋物線方程可求坐標,進而得解.【詳解】由拋物線的方程可得焦點,準線,由題意可得,設,有拋物線的性質(zhì)可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有頻率和為1求出;(2)求出概率對應的值即為中位數(shù);(3)求出第一組中總?cè)藬?shù),得女性人數(shù),然后求得恰有一名女性的方法數(shù)和總的方法數(shù)后可得概率【小問1詳解】解:因為頻率分布直方圖的小矩形面積和為1,所以,解得,【小問2詳解】解:前2組頻率和為,前3組頻率和為,所以中位數(shù)在第3組,設中位數(shù)為,則,;【小問3詳解】解:第一組總?cè)藬?shù)為,男性人2人,則女性有4人,不妨記兩名男性為,四名女性為,則隨機抽取2名群眾的可能為,,,共15種方案,其中恰有一名女性的方法數(shù),共8種,所以第1組中隨機抽取2名群眾組成維權(quán)志愿者服務隊,求恰有一名女性的概率為18、(1)(2)【解析】(1)由等比數(shù)列的通項公式計算基本量從而得出的通項公式;(2)由(1)可得,再由裂項相消法求和即可.【小問1詳解】設等比數(shù)列的公比為q,所以有,,聯(lián)立兩式解得或又因為數(shù)列是遞增的等比數(shù)列,所以,所以數(shù)列的通項公式為;【小問2詳解】∵,∴,∴19、(1)3(2)實數(shù)的值為和【解析】(1)由直線垂直,斜率乘積為可得值;(2)求出加以到直線的距離,由勾股定理求弦長,從而可得參數(shù)值【小問1詳解】圓,,,,,,【小問2詳解】圓半徑為,設圓心到直線的距離為,則又由點到直線距離公式得:化簡得:,解得:或所以實數(shù)的值為和.20、(1)證明見解析,;(2).【解析】(1)對遞推公式進行變形,結(jié)合等差數(shù)列的定義進行求解即可;(2)運用裂項相消法進行求解即可.【小問1詳解】因為,且,所以即,所以數(shù)列是公差為2的等差數(shù)列.又,所以即;【小問2詳解】由(1)得,所以.故.21、(1);(2);(3).【解析】(1)利用古典概型的概率公式可求得;(2)利用古典概型的概率公式和對立事件的概率公式可求得;(3)利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由表格中的數(shù)據(jù)可得.【小問2詳解】解:由表格中的數(shù)據(jù)可得,所以.【小問3詳解】解:可知即歲以下且??茖W歷,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 立春科學解讀
- 專用油品運輸業(yè)務協(xié)議(2024年度)版B版
- 2025年高效節(jié)水打機井建設與維護合同2篇
- 24節(jié)氣:大寒 相關(guān)英語練習
- 16《金色的草地》說課稿-2024-2025學年三年級上冊語文統(tǒng)編版
- 2025年度智慧交通PPP項目合作協(xié)議3篇
- 個人過橋融資合同2024年適用樣本版
- 氫能燃料電池研發(fā)合作合同
- 2025版寵物領(lǐng)養(yǎng)中心公益項目合作協(xié)議3篇
- 2024年美發(fā)美容師個人服務合同
- 兒童運動發(fā)育的早期干預和康復
- 《道路交通安全法》課件
- 2023年MBA綜合真題及答案(管理類聯(lián)考綜合)
- 工作優(yōu)化與效益提升
- 電機教學能力大賽獲獎之教學實施報告
- 新生兒家庭式護理
- 山東省泰安市新泰市2023-2024學年四年級上學期期末數(shù)學試卷
- DB21-T 3324-2020 螺桿擠壓式秸稈膨化機 技術(shù)條件
- 供水公司招聘考試題庫及答案
- 2024年國家能源集團江蘇電力有限公司招聘筆試參考題庫附帶答案詳解
- 河南省鄭州市鄭州經(jīng)濟技術(shù)開發(fā)區(qū)2023-2024學年七年級上學期期末歷史試題(無答案)
評論
0/150
提交評論