




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省部分省示范中學高二數(shù)學第一學期期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四棱錐中,四邊形為菱形,平面,是中點,下列敘述正確的是()A.平面 B.平面C.平面平面 D.平面平面2.如圖,在直三棱柱中,AB=BC,,若棱上存在唯一的一點P滿足,則()A. B.1C. D.23.雙曲線的焦距是()A.4 B.C.8 D.4.與向量平行,且經過點的直線方程為()A. B.C. D.5.在中,,滿足條件的三角形的個數(shù)為()A.0 B.1C.2 D.無數(shù)多6.在各項均為正數(shù)的等比數(shù)列中,若,則()A.6 B.12C.56 D.787.在平面上給定相異兩點,設點在同一平面上且滿足,當且時,點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.8.在中,角所對的邊分別為,,,則外接圓的面積是()A. B.C. D.9.若數(shù)列的前n項和(n∈N*),則=()A.20 B.30C.40 D.5010.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統(tǒng)民間藝術之一.如圖是一個窗花的圖案,以正六邊形各頂點為圓心、邊長為半徑作圓,陰影部分為其公共部分.現(xiàn)從該正六邊形中任取一點,則此點取自于陰影部分的概率為()A. B.C. D.11.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數(shù)學建模小組為測量塔的高度,獲得了以下數(shù)據:甲同學在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m12.設命題,,則為().A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的左、右焦點分別為,,為坐標原點,則以下說法正確的是()A.過點的直線與橢圓交于,兩點,則的周長為8B.橢圓上存在點,使得C.橢圓的離心率為D.為橢圓上一點,為圓上一點,則點,的最大距離為314.已知曲線,則以下結論正確的是______.①曲線C關于點對稱;②曲線C關于y軸對稱;③曲線C被x軸所截得的弦長為2;④曲線C上的點到原點距離都不超過2.15.已知圓和直線.(1)求直線l所經過的定點的坐標,并判斷直線與圓的位置關系;(2)求當k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.16.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長的2倍,則異面直線AC與BD所成角的余弦值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,,且橢圓過點,離心率,為坐標原點,過且不平行于坐標軸的動直線與有兩個交點,,線段的中點為.(1)求的標準方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點,使得為等邊三角形?若存在,求出點的坐標;若不存在,請說明理由.18.(12分)已知直線,拋物線.(1)與有公共點,求的取值范圍;(2)是坐標原點,過的焦點且與交于兩點,求的面積.19.(12分)已知圓C的圓心在直線上,且經過點和(1)求圓C的標準方程;(2)若過點的直線l與圓C交于A,B兩點,且,求直線l的方程20.(12分)已知拋物線的焦點為,點在拋物線上,且點的縱坐標為4,(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,試問拋物線上是否存在定點使得直線與的斜率互為倒數(shù)?若存在求出點的坐標,若不存在說明理由21.(12分)如圖,在四棱錐中,平面,底面為菱形,且,,分別為,的中點(Ⅰ)證明:平面;(Ⅱ)點在棱上,且,證明:平面22.(10分)已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列.(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用反證法可判斷A選項;利用面面垂直的性質可判斷BC選項;利用面面垂直的判定可判斷D選項.【詳解】對于A選項,因為四邊形為菱形,則,平面,平面,平面,若平面,因為,則平面平面,事實上,平面與平面相交,假設不成立,A錯;對于B選項,過點在平面內作,垂足為點,平面,平面,則,,,平面,而過作平面的垂線,有且只有一條,故與平面不垂直,B錯;對于C選項,過點在平面內作,垂足為點,因為平面,平面,則,,,則平面,若平面平面,過點在平面內作,垂足為點,因為平面平面,平面平面,平面,平面,而過點作平面的垂線,有且只有一條,即、重合,所以,平面平面,所以,,但四邊形為菱形,、不一定垂直,C錯;對于D選項,因為四邊形為菱形,則,平面,平面,,,平面,因為平面,因此,平面平面平面,D對.故選:D.2、D【解析】設,構建空間直角坐標系,令且,求出,,再由向量垂直的坐標表示列方程,結合點P的唯一性有求參數(shù)a,即可得結果.【詳解】由題設,構建如下圖空間直角坐標系,若,則,,且,所以,,又存在唯一的一點P滿足,所以,則,故,可得,此時,所以.故選:D3、C【解析】根據,先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎題.4、A【解析】利用點斜式求得直線方程.【詳解】依題意可知,所求直線的斜率為,所以所求直線方程為,即.故選:A5、B【解析】利用正弦定理得到,進而或,由,得,即可求解【詳解】由正弦定理得,,或,,,故滿足條件的有且只有一個.故選:B6、D【解析】由等比數(shù)列的性質直接求得.【詳解】在等比數(shù)列中,由等比數(shù)列的性質可得:由,解得:;由可得:,所以.故選:D7、C【解析】先求動點的軌跡方程,再根據面積的最大值求得,根據的面積最小值求,由此可求雙曲線的離心率.【詳解】設,,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當位于圓的最高點時的面積最大,所以,解得;當位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.8、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【詳解】因為,所以,由余弦定理得,,所以,設外接圓的半徑為,由正統(tǒng)定理得,,所以,所以外接圓的面積是.故選:B.9、B【解析】由前項和公式直接作差可得.【詳解】數(shù)列的前n項和(n∈N*),所以.故選:B.10、D【解析】求得陰影部分的面積,結合幾何概型概率計算公式,計算出所求的概率.【詳解】設正六邊形的邊長為,則其面積為.陰影部分面積為,故所求概率為.故選:D11、B【解析】設,先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.12、B【解析】根據全稱命題和特稱命題互為否定,即可得到結果.【詳解】因為命題,,所以為,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、ABD【解析】結合橢圓定義判斷A選項的正確性,結合向量數(shù)量積的坐標運算判斷B選項的正確性,直接法求得橢圓的離心率,由此判斷C選項的正確性,結合兩點間距離公式判斷D選項的正確性.【詳解】對于選項:由橢圓定義可得:,因此的周長為,所以選項正確;對于選項:設,則,且,又,,所以,,因此,解得,,故選項正確;對于選項:因為,,所以,即,所以離心率,所以選項錯誤;對于選項:設,,則點到圓的圓心的距離為,因為,所以,所以選項正確,故選:ABD14、②④【解析】將x換成,將y換成,若方程不變則關于原點對稱;將x換成,曲線的方程不變則關于y軸對稱;令通過解方程即可求得被x軸所截得的弦長;利用基本不等式即可判斷出曲線C上y軸右側的點到原點距離是否不超過2,根據曲線C關于y軸對稱,即可判斷出曲線C上的點到原點距離是否都不超過2.【詳解】對于①,將x換成,將y換成,方程改變,則曲線C關于點不對稱,故①錯誤;對于②,將x換成,曲線的方程不變,則曲線C關于y軸對稱,故②正確;對于③,令得,,解得,即曲線C與x軸的交點為和,則曲線C被x軸所截得的弦長為,故③錯誤;對于④,當時,,可得,當且僅當時取等號,即,則,即曲線C上y軸右側的點到原點的距離都不超過2,此曲線關于y軸對稱,即曲線C上y軸左側的點到原點的距離也不超過2,故④正確;故答案為:②④.15、(1)直線過定點P(4,3),直線和圓總有兩個不同交點(2)k=1,【解析】(1)把直線方程化為點斜式方程即可;(2)由圓的性質知,當直線與PC垂直時,弦長最短.【小問1詳解】直線方程可化為,則直線過定點P(4,3),又圓C標準方程為,圓心為,半徑為,而,所以點P在圓內,所以不論k取何值,直線和圓總有兩個不同交點.【小問2詳解】由圓的性質知,當直線與PC垂直時,弦長最短.,所以k=1時弦長最短.弦長為.16、.【解析】利用空間向量夾角公式進行求解即可.【詳解】取CD的中點O,以O為原點,以CD所在直線為x軸,以底面內過點O且與CD垂直的直線為y軸,以過點O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標系設,則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3)不存在,理由見解析.【解析】(1)由橢圓所過點及離心率,列方程組,再求解即得;(2)設出點A,B坐標并列出它們滿足的關系,利用點差法即可作答;(3)設直線的方程,聯(lián)立直線與橢圓的方程,借助韋達定理求得,,再結合為等邊三角形的條件即可作答.【詳解】(1)顯然,半焦距c有,即,則,所以橢圓的標準方程為;(2)設,,,,由(1)知,,兩式相減得,即,而弦的中點,則有,所以;(3)假定存在符合要求的點P,由(1)知,設直線的方程為,由得:,則,,于是得,從而得點,,因為等邊三角形,即有,,因此,,,從而得,整理得,無解,所以在y軸上不存在點,使得為等邊三角形.18、(1);(2).【解析】(1)聯(lián)立直線l與拋物線C的方程消去x,借助判別式建立不等式求解作答.(2)利用(1)中信息求出點縱坐標差的絕對值即可計算作答.【小問1詳解】依題意,由消去x并整理得:,因與有公共點,則,解得:,所以的取值范圍是.【小問2詳解】拋物線的焦點,則,設,由(1)知,,則,因此,,所以的面積.19、(1)(2)或【解析】(1)點和的中垂線經過圓心,兩直線聯(lián)立方程得圓心坐標,再利用兩點間距離公式求解半徑.(2)已知弦長,求解直線方程,分類討論斜率是否存在.小問1詳解】點和的中點為,,所以中垂線的,利用點斜式得方程為,聯(lián)立方程得圓心坐標為,所以圓C的標準方程為.【小問2詳解】當過點的直線l斜率不存在時,直線方程為,此時弦長,符合題意.當過點的直線l斜率存在時,設直線方程為,化簡得,弦心距,所以,解得,所以直線方程為.綜上所述直線方程為或.20、(1)(2)存在,【解析】(1)利用拋物線的焦半徑公式求得點的橫坐標,進而求得p,可得答案;(2)根據題意可設直線方程,和拋物線方程聯(lián)立,得到根與系數(shù)的關系式,利用直線與的斜率互為倒數(shù)列出等式,化簡可得結論.【小問1詳解】(1)則,,,,故C的方程為:;【小問2詳解】假設存在定點,使得直線與的斜率互為倒數(shù),由題意可知,直線AB的斜率存在,且不為零,,,,,所以Δ>0y1+即或,,,則,,使得直線與的斜率互為倒數(shù).21、(Ⅰ)證明見解析(Ⅱ)證明見解析【解析】(Ⅰ)證明和得到平面.(Ⅱ)根據相似得到證明平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款 民間借貸 合同范本
- 任意健身合同范本
- 醫(yī)院吊頂合同范本
- 醫(yī)師合同范本
- 獸醫(yī)聘用勞動合同范本
- 關于按揭車合同范本
- 個人租賃司機合同范本
- 出口業(yè)務合同范本
- 免租期補充合同范本
- 買賣小區(qū)用地合同范本
- 個人保證無糾紛承諾保證書
- DB51T10009-2024DB50T10009-2024康養(yǎng)度假氣候類型劃分
- 華文版六年級下冊書法教案
- 生產安全重大事故隱患檢查表(根據住建部房屋市政工程生產安全重大事故隱患判定標準(2022版)編制)
- 期末模擬測試卷(試卷)2024-2025學年六年級數(shù)學上冊人教版
- 2024屆護士資格考試必考基礎知識復習題庫及答案(共170題)
- 小學生防性侵安全教育主題班會課件
- 幸福心理學智慧樹知到答案2024年浙江大學
- 人教版一年級數(shù)學下冊教案全冊(完整版下載打印)
- 2024至2030年全球及中國消費電子磁阻隨機存取存儲器(MRAM)行業(yè)深度研究報告
- 云南省2023年秋季學期期末普通高中學業(yè)水平考試信息技術(含答案解析)
評論
0/150
提交評論