版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆湖南長沙市一中高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則()A B.C. D.2.函數(shù)的零點個數(shù)為(
)A.1 B.2C.3 D.43.命題“,”的否定為()A., B.,C., D.,4.已知指數(shù)函數(shù)是減函數(shù),若,,,則m,n,p的大小關(guān)系是()A. B.C. D.5.若集合,,則A. B.C. D.6.“”是“”的()A.充分必要條件 B.充分而不必要條件C.必要而不充分條件 D.既不充分也不必要條件7.我國東漢數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用一副“弦圖”給出了勾股定理的證明,后人稱其為“趙爽弦圖”,它是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如圖所示,在“趙爽弦圖”中,若,,,則()A. B.C. D.8.已知直線與直線平行且與圓:相切,則直線的方程是A. B.或C. D.或9.兩圓和的位置關(guān)系是A.相離 B.相交C.內(nèi)切 D.外切10.已知,都為單位向量,且,夾角的余弦值是,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.“”是“”的_______條件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分又不必要”中的一個)12.如果滿足對任意實數(shù),都有成立,那么a的取值范圍是______13.已知扇形的面積為4,圓心角為2弧度,則該扇形的弧長為_________14.已知函數(shù)則___________.15.已知,則的值為________16.已知函數(shù)(且)的圖象過定點,則點的坐標(biāo)為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知全集,集合,集合.(1)求;(2)若集合,且集合與集合滿足,求實數(shù)的取值范圍.18.如圖,在平行四邊形中,設(shè),.(1)用向量,表示向量,;(2)若,求證:.19.對正整數(shù)n,記In={1,2,3…,n},Pn={|m∈In,k∈In}(1)求集合P7中元素的個數(shù);(2)若Pn的子集A中任意兩個元素之和不是整數(shù)的平方,則稱A為“稀疏集”.求n的最大值,使Pn能分成兩個不相交的稀疏集的并20.若兩個函數(shù)和對任意,都有,則稱函數(shù)和在上是疏遠(yuǎn)的(1)已知命題“函數(shù)和在上是疏遠(yuǎn)的”,試判斷該命題的真假.若該命題為真命題,請予以證明;若為假命題,請舉反例;(2)若函數(shù)和在上是疏遠(yuǎn)的,求整數(shù)a的取值范圍21.已知函數(shù),函數(shù)的最小正周期為,是函數(shù)的一條對稱軸.(1)求函數(shù)的對稱中心和單調(diào)區(qū)間;(2)若,求函數(shù)在的最大值和最小值,并寫出對應(yīng)的的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】將式子先利用二倍角公式和平方關(guān)系配方化簡,然后增添分母(),進(jìn)行齊次化處理,化為正切的表達(dá)式,代入即可得到結(jié)果【詳解】將式子進(jìn)行齊次化處理得:故選:C【點睛】易錯點睛:本題如果利用,求出的值,可能還需要分象限討論其正負(fù),通過齊次化處理,可以避開了這一討論2、B【解析】函數(shù)的定義域為,且,即函數(shù)為偶函數(shù),當(dāng)時,,設(shè),則:,據(jù)此可得:,據(jù)此有:,即函數(shù)是區(qū)間上的減函數(shù),由函數(shù)的解析式可知:,則函數(shù)在區(qū)間上有一個零點,結(jié)合函數(shù)的奇偶性可得函數(shù)在R上有2個零點.本題選擇B選項.點睛:函數(shù)零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個零點(3)利用圖象交點的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點的橫坐標(biāo)有幾個不同的值,就有幾個不同的零點3、C【解析】由全稱命題的否定是特稱命題可得答案.【詳解】根據(jù)全稱命題的否定是特稱命題,所以“,”的否定為“,”.故選:C.4、B【解析】由已知可知,再利用指對冪函數(shù)的性質(zhì),比較m,n,p與0,1的大小,即可得解.【詳解】由指數(shù)函數(shù)是減函數(shù),可知,結(jié)合冪函數(shù)的性質(zhì)可知,即結(jié)合指數(shù)函數(shù)的性質(zhì)可知,即結(jié)合對數(shù)函數(shù)的性質(zhì)可知,即,故選:B.【點睛】方法點睛:本題考查比較大小,比較指數(shù)式和對數(shù)式的大小,可以利用函數(shù)的單調(diào)性,引入中間量;有時也可用數(shù)形結(jié)合的方法,解題時要根據(jù)實際情況來構(gòu)造相應(yīng)的函數(shù),利用函數(shù)單調(diào)性進(jìn)行比較,如果指數(shù)相同,而底數(shù)不同則構(gòu)造冪函數(shù),若底數(shù)相同而指數(shù)不同則構(gòu)造指數(shù)函數(shù),若引入中間量,一般選0或1.5、C【解析】因為集合,,所以A∩B=x故選C.6、B【解析】由等價于,或,再根據(jù)充分、必要條件的概念,即可得到結(jié)果.【詳解】因為,所以,或,所以“”是“”的充分而不必要條件.故選:B.7、C【解析】利用平面向量的線性運算及平面向量的基本定理求解即可【詳解】∵∴∵∴=∴=,∴故選:C8、D【解析】圓的圓心為,半徑為,因為直線,所以,設(shè)直線的方程為,由題意得或所以,直線的方程或9、B【解析】依題意,圓的圓坐標(biāo)為,半徑為,圓的標(biāo)準(zhǔn)方程為,其圓心坐標(biāo)為,半徑為,兩圓心的距離,且兩圓相交,故選B.10、D【解析】利用,結(jié)合數(shù)量積的定義可求得的平方的值,再開方即可【詳解】依題意,,故選D【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,屬基礎(chǔ)題.向量數(shù)量積的運算主要掌握兩點:一是數(shù)量積的基本公式;二是向量的平方等于向量模的平方.二、填空題:本大題共6小題,每小題5分,共30分。11、充分不必要【解析】解不等式,利用集合的包含關(guān)系判斷可得出結(jié)論.【詳解】由得,解得或,因或,因此,“”是“”的充分不必要條件.故答案為:充分不必要.12、【解析】根據(jù)題中條件先確定函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性求解參數(shù)的取值范圍.【詳解】由對任意實數(shù)都成立可知,函數(shù)為實數(shù)集上的單調(diào)減函數(shù).所以解得.故答案為.13、4【解析】設(shè)扇形半徑為,弧長為,則,解得考點:角的概念,弧度的概念14、5【解析】先求出,再根據(jù)該值所處范圍代入相應(yīng)的解析式中計算結(jié)果.【詳解】由題意可得,則,故答案為:5.15、【解析】利用正弦、余弦、正切之間的商關(guān)系,分式的分子、分母同時除以即可求出分式的值.【詳解】【點睛】本題考查了同角三角函數(shù)的平方和關(guān)系和商關(guān)系,考查了數(shù)學(xué)運算能力.16、【解析】令,結(jié)合對數(shù)的運算即可得出結(jié)果.【詳解】令,得,又因此,定點的坐標(biāo)為故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)化簡集合,按照補集,并集定義,即可求解;(2),得,結(jié)合數(shù)軸,確定集合端點位置,即可求解.【詳解】(1)∵;∴;∴;(2)∵,∴;∴,∴,∴實數(shù)的取值范圍為.【點睛】本題考查集合間的運算,以及由集合關(guān)系求參數(shù),屬于基礎(chǔ)題.18、(1),.(2)證明見解析【解析】(1)根據(jù)向量的運算法則,即可求得向量,;(2)由,根據(jù)向量的運算法則,求得,即可求解.【小問1詳解】解:在平行四邊形中,由,,根據(jù)向量的運算法則,可得,.【小問2詳解】解:因為,可得,所以.19、(1)46(2)n的最大值為14【解析】(1)對于集合P7,有n=7.當(dāng)k=4時,Pn={|m∈In,k∈In}中有3個數(shù)(1,2,3)與In={1,2,3…,n}中的數(shù)重復(fù),由此求得集合P7中元素的個數(shù)為7×7﹣3=46(2)先證當(dāng)n≥15時,Pn不能分成兩個不相交的稀疏集的并集.否則,設(shè)A和B為兩個不相交的稀疏集,使A∪B=Pn?In不妨設(shè)1∈A,則由于1+3=22,∴3?A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,這與A為稀疏集相矛盾再證P14滿足要求.當(dāng)k=1時,P14={|m∈I14,k∈I14}=I14,可以分成2個稀疏集的并集事實上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},則A1和B1都稀疏集,且A1∪B1=I14當(dāng)k=4時,集合{|m∈I14}中,除整數(shù)外,剩下的數(shù)組成集合{,,,…,},可以分為下列3個稀疏集的并:A2={,,,},B2={,,}當(dāng)k=9時,集合{|m∈I14}中,除整數(shù)外,剩下的數(shù)組成集合{,,,,…,,},可以分為下列3個稀疏集的并:A3={,,,,},B3={,,,,}最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9}中的數(shù)的分母都是無理數(shù),它與Pn中的任何其他數(shù)之和都不是整數(shù),因此,令A(yù)=A1∪A2∪A3∪C,B=B1∪B2∪B3,則A和B是不相交的稀疏集,且A∪B=P14綜上可得,n的最大值為1420、(1)該命題為假命題,反例為:當(dāng)時,.(2).【解析】(1)利用“疏遠(yuǎn)函數(shù)”的定義直接判斷即可,以或舉例即可;(2)由函數(shù)的定義域可確定實數(shù),構(gòu)造函數(shù),可證當(dāng)時,恒成立,即函數(shù)和在上是疏遠(yuǎn)的【小問1詳解】該命題為假命題,反例為:當(dāng)時,.【小問2詳解】由函數(shù)的定義域可知,故記∵在上單調(diào)遞增,在上單調(diào)遞減,∴在上單調(diào)遞增,∴當(dāng)時,,不滿足;當(dāng)時,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新的勞動合同范本3篇
- 提高財務(wù)管理水平的策略3篇
- 文藝活動承包協(xié)議3篇
- 安全騎行我擔(dān)當(dāng)3篇
- 文讀懂居間費合作協(xié)議3篇
- 布線工程契約3篇
- 新房屋買賣合同中車庫的貸款問題3篇
- 攤位出租合同范本3篇
- 音樂劇編劇招聘合同樣本
- 商業(yè)步行街亮化施工合同
- GB/T 30426-2013含堿性或其他非酸性電解質(zhì)的蓄電池和蓄電池組便攜式鋰蓄電池和蓄電池組
- GB/T 1222-2007彈簧鋼
- 企業(yè)激勵員工所面臨的困境及對策
- GB 16804-1997氣瓶警示標(biāo)簽
- 國開作業(yè)《建筑制圖基礎(chǔ)》學(xué)習(xí)過程表現(xiàn)參考22
- 食品安全BRCGS包裝材料全球標(biāo)準(zhǔn)第六版管理手冊及程序文件
- 高中政治必修二 1.1《公有制為主體 多種所有制經(jīng)濟共同發(fā)展》集體備課課件
- 交通信號控制系統(tǒng)檢驗批質(zhì)量驗收記錄表
- 鹽化工產(chǎn)業(yè)鏈
- 消費者行為學(xué)50年:演化與顛覆
- T∕CTES 1035-2021 透明質(zhì)酸鈉紡織品 保濕性能的檢測與評價
評論
0/150
提交評論