版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆柳州市柳江中學(xué)高一數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知奇函數(shù)fx在R上是增函數(shù),若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b2.的值域是()A. B.C. D.3.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度4.已知集合P=,,則PQ=()A. B.C. D.5.在下列各圖中,每個圖的兩個變量具有線性相關(guān)關(guān)系的圖是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)6.已知函數(shù),則()A.當(dāng)且僅當(dāng)時,有最小值為B.當(dāng)且僅當(dāng)時,有最小值為C.當(dāng)且僅當(dāng)時,有最大值為D.當(dāng)且僅當(dāng)時,有最大值為7.已知命題:,,則()A.:, B.:,C.:, D.:,8.已知正方體ABCD-ABCD中,E、F分別為BB、CC的中點,那么異面直線AE與DF所成角的余弦值為A. B.C. D.9.已知函數(shù),則該函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.10.如圖,一質(zhì)點在半徑為1的圓O上以點為起點,按順時針方向做勻速圓周運動,角速度為,5s時到達點,則()A.-1 B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的值為______12.函數(shù)的定義域為__________13.已知,,則的值為__________14.已知函數(shù)(為常數(shù))是奇函數(shù).(1)求的值與函數(shù)的定義域.(2)若當(dāng)時,恒成立.求實數(shù)的取值范圍.15.已知函數(shù),分別是定義在R上的偶函數(shù)和奇函數(shù),且滿足,則函數(shù)的解析式為____________________;若函數(shù)有唯一零點,則實數(shù)的值為____________________16.當(dāng)時,函數(shù)取得最大值,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)且為自然對數(shù)的底數(shù)).(1)判斷函數(shù)的奇偶性并證明(2)證明函數(shù)在是增函數(shù)(3)若不等式對一切恒成立,求滿足條件的實數(shù)的取值范圍18.已知函數(shù)且.(1)若函數(shù)的圖象過點,求的值;(2)當(dāng)時,若不等式對任意恒成立,求實數(shù)的取值范圍19.某市一家庭今年一月份、二月份和三月份煤氣用量和支付費用如下表所示:月份用氣量(立方米)煤氣費(元)144.0022514.0033519.00該市煤氣收費的方法是:煤氣費=基本費+超額費+保險費若每月用氣量不超過最低額度A(A>4)立方米時,只付基本費3元和每戶每月定額保險費C(0<C≤5)元;若用氣量超過A立方米時,超過部分每立方米付B元(1)根據(jù)上面的表格求A,B,C的值;(2)記該家庭第四月份用氣為x立方米,求應(yīng)交的煤氣費y元20.某食品的保鮮時間y(單位:小時)與儲存溫度x(單位:)滿足函數(shù)關(guān)系(為自然對數(shù)的底數(shù),k、b為常數(shù)).若該食品在0的保鮮時間設(shè)計192小時,在22的保鮮時間是48小時,則該食品在33的保鮮時間是______小時.21.已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在有且僅有兩個零點,求實數(shù)取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意:a=f-且:log2據(jù)此:log2結(jié)合函數(shù)的單調(diào)性有:flog即a>b>c,c<b<a.本題選擇C選項.【考點】指數(shù)、對數(shù)、函數(shù)的單調(diào)性【名師點睛】比較大小是高考常見題,指數(shù)式、對數(shù)式的比較大小要結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù),借助指數(shù)函數(shù)和對數(shù)函數(shù)的圖象,利用函數(shù)的單調(diào)性進行比較大小,特別是靈活利用函數(shù)的奇偶性和單調(diào)性數(shù)形結(jié)合不僅能比較大小,還可以解不等式.2、A【解析】先求得的范圍,再由單調(diào)性求值域【詳解】因,所以,又在時單調(diào)遞增,所以當(dāng)時,函數(shù)取得最大值為,所以值域是,故選:A.3、D【解析】,據(jù)此可知,為了得到函數(shù)的圖象,可以將函數(shù)的圖象向右平移個單位長度.本題選擇D選項.4、B【解析】根據(jù)集合交集定義求解.【詳解】故選:B【點睛】本題考查交集概念,考查基本分析求解能力,屬基礎(chǔ)題.5、D【解析】由線性相關(guān)的定義可知:(2)中兩變量線性正相關(guān),(3)中兩變量線性負(fù)相關(guān),故選:D考點:變量線性相關(guān)問題6、A【解析】由基本不等式可得答案.【詳解】因為,所以,當(dāng)且僅當(dāng)即時等號成立.故選:A.7、C【解析】根據(jù)全稱命題的否定是特稱命題進行否定即可得答案.【詳解】解:因為全稱命題的否定為特稱命題,所以命題:,的否定為::,.故選:C.8、C【解析】連接DF,因為DF與AE平行,所以∠DFD即為異面直線AE與DF所成角的平面角,設(shè)正方體的棱長為2,則FD=FD=,由余弦定理得cos∠DFD==.9、C【解析】先用誘導(dǎo)公式化簡,再求單調(diào)遞減區(qū)間.【詳解】要求單調(diào)遞減區(qū)間,只需,.故選:C.【點睛】(1)三角函數(shù)問題通常需要把它化為“一角一名一次”的結(jié)構(gòu),借助于或的性質(zhì)解題;(2)求單調(diào)區(qū)間,最后的結(jié)論務(wù)必寫成區(qū)間形式,不能寫成集合或不等式10、C【解析】由正弦、余弦函數(shù)的定義以及誘導(dǎo)公式得出.【詳解】設(shè)單位圓與軸正半軸的交點為,則,所以,,故.故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】根據(jù)給定條件把正余弦的齊次式化成正切,再代入計算作答.【詳解】因,則,所以的值為2.故答案為:212、【解析】真數(shù)大于0求定義域.【詳解】由題意得:,解得:,所以定義域為.故答案為:13、【解析】根據(jù)兩角和的正弦公式即可求解.【詳解】由題意可知,因為,所以,所以,則故答案為:.14、(1),定義域為或;(2).【解析】(1)根據(jù)函數(shù)是奇函數(shù),得到,求出,再解不等式,即可求出定義域;(2)先由題意,根據(jù)對數(shù)函數(shù)的性質(zhì),求出的最小值,即可得出結(jié)果.【詳解】(1)因為函數(shù)是奇函數(shù),所以,所以,即,所以,令,解得或,所以函數(shù)的定義域為或;(2),當(dāng)時,所以,所以.因為,恒成立,所以,所以的取值范圍是.【點睛】本題主要考查由函數(shù)奇偶性求參數(shù),考查求具體函數(shù)的定義域,考查含對數(shù)不等式,屬于??碱}型.15、(1).(2).或【解析】把方程中的換成,然后利用奇偶性可得另一方程,聯(lián)立可解得;令,可得為偶函數(shù),從而可得關(guān)于對稱,由函數(shù)有唯一零點,可得,從而可求得的值【詳解】解:因為函數(shù),分別是定義在上的偶函數(shù)和奇函數(shù),所以,因為,①所以,即,②①②聯(lián)立,可解得令,則,所以為偶函數(shù),所以關(guān)于對稱,因為有唯一的零點,所以的零點只能為,即,解得或故答案為:;或【點睛】關(guān)鍵點點睛:此題考查函數(shù)奇偶性的應(yīng)用,考查函數(shù)的零點,解題的關(guān)鍵是令,可得為偶函數(shù),從而可得關(guān)于對稱,由函數(shù)有唯一零點,可得,從而可求得的值,考查數(shù)學(xué)轉(zhuǎn)化思想和計算能力,屬于中檔題16、##【解析】由輔助角公式,正弦函數(shù)的性質(zhì)求出,,再根據(jù)兩角和的正切和公式,誘導(dǎo)公式求.【詳解】(其中,),當(dāng)時,函數(shù)取得最大值∴,,即,,所以,.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析;(3).【解析】(1)定義域為,關(guān)于原點對稱,又,為奇函數(shù)(2)任取,,且,則===,又在上為增函數(shù)且,,,,在上是增函數(shù)(3)由(1)知在上為奇函數(shù)且單調(diào)遞增,由得由題意得,即恒成立,又.綜上得的取值范圍是點睛:本題是一道關(guān)于符合函數(shù)的題目,總體方法是掌握函數(shù)奇偶性和單調(diào)性的知識,屬于中檔題.在證明函數(shù)單調(diào)性時可以運用定義法證明,在解答函數(shù)中的不等式時,要依據(jù)函數(shù)的單調(diào)性,比較兩數(shù)大小,含有參量時要分離參量計算最值18、(1);(2)﹒【解析】(1)將點代入解析式,即可求出的值;(2)換元法,令,然后利用函數(shù)思想求出新函數(shù)的最小值即可【小問1詳解】由已知得,∴,解得,結(jié)合,且,∴;【小問2詳解】由已知得,當(dāng),時恒成立,令,,且,,,∵在,上單調(diào)遞增,故,∵是單調(diào)遞增函數(shù),故,故即為所求,即的范圍為19、(1);(2).【解析】解:(1)月份的用氣量沒有超過最低額度,所以月份的用氣量超過了最低額度,所以,解得(2)當(dāng)時,需付費用為元當(dāng)時,需付費用為元所以應(yīng)交的煤氣費考點:函數(shù)解析式的求解點評:解決的關(guān)鍵是根據(jù)實際問題,將其轉(zhuǎn)化為數(shù)學(xué)模型,然后得到解析式,求解運算,屬于基礎(chǔ)題20、2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度膩子產(chǎn)品銷售與售后服務(wù)合同2篇
- 二零二五年度環(huán)保技術(shù)開發(fā)合伙投資合同
- 2024版學(xué)校污水處理設(shè)施清掏協(xié)議版B版
- 忻州師范學(xué)院《建筑工程評估基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年水利工程勞務(wù)派遣與設(shè)備租賃合同3篇
- 西安工商學(xué)院《圖像處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 武漢警官職業(yè)學(xué)院《低頻模擬電路》2023-2024學(xué)年第一學(xué)期期末試卷
- 文山學(xué)院《房屋建筑學(xué)課程設(shè)討》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年生物制藥技術(shù)轉(zhuǎn)讓及合作開發(fā)協(xié)議2篇
- 二零二五年度廠長任期企業(yè)戰(zhàn)略規(guī)劃與執(zhí)行合同2篇
- 2024年滄州經(jīng)濟開發(fā)區(qū)招聘社區(qū)工作者筆試真題
- 中外美術(shù)史試題及答案
- 2025年安徽省銅陵市公安局交警支隊招聘交通輔警14人歷年高頻重點提升(共500題)附帶答案詳解
- 公共政策分析 課件 第8章政策評估;第9章政策監(jiān)控
- 人教版八年級上學(xué)期物理期末復(fù)習(xí)(壓軸60題40大考點)
- 企業(yè)環(huán)保知識培訓(xùn)課件
- 2024年度管理評審報告
- 暨南大學(xué)《微觀經(jīng)濟學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 醫(yī)藥銷售合規(guī)培訓(xùn)
- DB51-T 5038-2018 四川省地面工程施工工藝標(biāo)準(zhǔn)
- 三年級數(shù)學(xué)(上)計算題專項練習(xí)附答案
評論
0/150
提交評論