版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省達標名校2025屆高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓與圓在第二象限的交點是點,是橢圓的左焦點,為坐標原點,到直線的距離是,則橢圓的離心率是()A. B.C. D.2.我國古代數(shù)學典籍《四元玉鑒》中有如下一段話:“河有汛,預差夫一千八百八十人筑堤,只云初日差六十五人,次日轉(zhuǎn)多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數(shù)比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人3.為調(diào)查學生的課外閱讀情況,學校從高二年級四個班的182人中隨機抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機剔除的個數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,24.若函數(shù)在區(qū)間內(nèi)存在最大值,則實數(shù)的取值范圍是()A. B.C. D.5.已知,,若,則實數(shù)的值為()A. B.C. D.6.下列有關(guān)命題的表述中,正確的是()A.命題“若是偶數(shù),則,都是偶數(shù)”的否命題是假命題B.命題“若為正無理數(shù),則也是無理數(shù)”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題7.已知拋物線的焦點為F,直線l經(jīng)過點F交拋物線C于A,B兩點,交拋物淺C的準線于點P,若,則為()A.2 B.3C.4 D.68.設雙曲線的實軸長與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.9.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.10.已知,是橢圓C的兩個焦點,P是C上的一點,若以為直徑的圓過點P,且,則C的離心率為()A. B.C. D.11.過點,的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或412.隨著城市生活節(jié)奏的加快,網(wǎng)上訂餐成為很多上班族的選擇,下表是某外賣騎手某時間段訂餐數(shù)量與送餐里程的統(tǒng)計數(shù)據(jù)表:訂餐數(shù)/份122331送餐里程/里153045現(xiàn)已求得上表數(shù)據(jù)的回歸方程中的值為1.5,則據(jù)此回歸模型可以預測,訂餐100份外賣騎手所行駛的路程約為()A.155里 B.145里C.147里 D.148里二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于曲線,則以下結(jié)論正確的個數(shù)有______個①曲線C關(guān)于原點對稱;②曲線C中,;③曲線C是不封閉圖形,且它與圓無公共點;④曲線C與曲線有4個交點,這4點構(gòu)成正方形14.已知B(,0)是圓A:內(nèi)一點,點C是圓A上任意一點,線段BC的垂直平分線與AC相交于點D.則動點D的軌跡方程為_________________.15.已知拋物線的焦點為F,A為拋物線C上一點.以F為圓心,F(xiàn)A為半徑的圓交拋物線C的準線于B,D兩點,A,F(xiàn),B三點共線,且,則______16.函數(shù)極值點的個數(shù)是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知拋物線的焦點與橢圓的右焦點重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設是拋物線上一點,且,求點的坐標18.(12分)已知函數(shù)(Ⅰ)若的圖象在點處的切線與軸負半軸有公共點,求的取值范圍;(Ⅱ)當時,求的最值19.(12分)已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和20.(12分)已知:圓是的外接圓,邊所在直線的方程為,中線所在直線的方程為,直線與圓相切于點.(1)求點和點的坐標;(2)求圓的方程.21.(12分)自2021年秋季起,江西省普通高中起始年級全面實施新課程改革,為了迎接新高考,某校舉行物理和化學等選科考試,其中600名學生化學成績(滿分100分)的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:第一組,第二組,第三組,第四組,第五組.已知圖中前三個組的頻率依次構(gòu)成等差數(shù)列,第一組和第五組的頻率相同(1)求a,b的值;(2)估算高分(大于等于80分)人數(shù);(3)估計這600名學生化學成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)和中位數(shù)(中位數(shù)精確到0.1)22.(10分)如圖,在四棱錐中,,,,,為中點,且平面.(1)求點到平面的距離;(2)線段上是否存在一點,使平面?如果不存在,請說明理由;如果存在,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因為圓,可得,過點作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側(cè)同除,可得,解得或,又因為,所以橢圓的離心率為.故選:B【點睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結(jié)合直角三角形的勾股定理,列出關(guān)于的方程是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎題.2、B【解析】根據(jù)題意,設每天派出的人數(shù)組成數(shù)列,可得數(shù)列是首項,公差數(shù)7的等差數(shù)列,解方程可得所求值【詳解】解:設第天派出的人數(shù)為,則是以65為首項、7為公差的等差數(shù)列,且,,∴,,∴天則目前派出的人數(shù)為人,故選:B3、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機剔除人.故選:A.4、A【解析】利用函數(shù)的導數(shù),求解函數(shù)的極值,推出最大值,然后轉(zhuǎn)化列出不等式組求解的范圍即可【詳解】,或,∴在單調(diào)遞減,在單調(diào)遞增,在單調(diào)遞減,∴f(x)有極大值,要使f(x)在上有最大值,則極大值3即為該最大值,則,又或,∴,綜上,.故選:A.5、A【解析】由,得,從而可得答案.【詳解】解:因為,所以,即,解得.故選:A.6、C【解析】對于選項A:根據(jù)偶數(shù)性質(zhì)即可判斷;對于選項B:通過舉例即可判斷,對于選項C:利用逆否命題的概念即可判斷;對于選項D:根據(jù)且、或和非的關(guān)系即可判斷.【詳解】選項A:原命題的否命題為:若不是偶數(shù),則,不都是偶數(shù),若,都是偶數(shù),則一定是偶數(shù),從而原命題的否命題為真命題,故A錯誤;選項B:原命題的逆命題:若是無理數(shù),則也為正無理數(shù),當,即為無理數(shù),但是有理數(shù),故B錯誤;選項C:由逆否命題的概念可知,C正確;選項D:由為假命題可知,,至少有一個為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯誤.故選:C.7、C【解析】由題意可知設,由可得,可求得,,根據(jù)模長公式計算即可得出結(jié)果.【詳解】由題意可知,準線方程為,設,可知,,解得:,代入到拋物線方程可得:.,故選:C8、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因為,所以,所以的漸近線方程為.故選:C.9、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A10、B【解析】根據(jù)題意,在中,設,則,進而根據(jù)橢圓定義得,進而可得離心率.【詳解】在中,設,則,又由橢圓定義可知則離心率,故選:B.【點睛】本題考查橢圓離心率的計算,考查運算求解能力,是基礎題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點三角形中根據(jù)邊角關(guān)系求解.11、A【解析】解方程即得解.【詳解】由題得.故選:A【點睛】本題主要考查斜率的計算,意在考查學生對該知識的理解掌握水平.12、C【解析】由統(tǒng)計數(shù)據(jù)求樣本中心,根據(jù)樣本中心在回歸直線上求得,即可得回歸方程,進而估計時的y值即可.【詳解】由題意:,,則,可得,故,當時,.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)曲線的方程,以及曲線的對稱性、范圍,結(jié)合每個選項進行逐一分析,即可判斷.【詳解】①將方程中的分別換為,方程不變,故該曲線關(guān)于原點對稱,故正確;②因為,解得或,故,同理可得:,故錯誤;③根據(jù)②可知,該曲線不是封閉圖形;聯(lián)立與,可得:,將其視作關(guān)于的一元二次方程,故,所以方程無根,故曲線與沒有交點;綜上所述,③正確;④假設曲線C與曲線有4個交點且交點構(gòu)成正方形,根據(jù)對稱性,第一象限的交點必在上,聯(lián)立與可得:,故交點為,而此點坐標不滿足,所以這樣的正方形不存在,故錯誤;綜上所述,正確的是①③.故答案為:.【點睛】本題考察曲線與方程中利用曲線方程研究曲線性質(zhì),處理問題的關(guān)鍵是把握由曲線方程如何研究對稱性以及范圍問題,屬困難題.14、【解析】利用橢圓的定義可得軌跡方程.【詳解】連接,由題意,,則,由橢圓的定義可得動點D的軌跡為橢圓,其焦點坐標為,長半軸長為2,故短半軸長為1,故軌跡方程為:.故答案為:.15、2【解析】求得拋物線的焦點和準線方程,由,,三點共線,推得,由三角形的中位線性質(zhì)可得到準線的距離,可得的值【詳解】拋物線的焦點為,,準線方程為,因為,,三點共線,可得為圓的直徑,如圖示:設準線交x軸于E,所以,則,由拋物線的定義可得,又是的中點,所以到準線的距離為,故答案為:216、0【解析】通過導數(shù)判斷函數(shù)的單調(diào)性即可得極值點的情況.【詳解】因為,,所以在上恒成立,所以在上單調(diào)遞增,所以函數(shù)的極值點的個數(shù)是0,故答案為:0.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點即為拋物線的焦點,即可求出答案.(3)由拋物線定義可求出點的坐標【小問1詳解】由題意可知,.【小問2詳解】橢圓的右焦點為,故拋物線的焦點為.拋物線的方程為.【小問3詳解】設的坐標為,,解得,.故的坐標為.18、(Ⅰ);(Ⅱ)答案見解析.【解析】(Ⅰ)求導數(shù).求得切線方程,由切線與軸的交點在負半軸可得的范圍;(Ⅱ)求導數(shù),由的正負確定單調(diào)性,極值得最值【詳解】命題意圖本題主要考查導數(shù)在函數(shù)問題中的應用解析(Ⅰ)由題可知,,故可得的圖象在點處的切線方程為令,可得由題意可得,即,解得,即的取值范圍為(Ⅱ)當時,,易知在上單調(diào)遞增又,當時,,此時單調(diào)遞減,當時,,此時單調(diào)遞增,無最大值【點睛】關(guān)鍵點點睛:本題考查用導數(shù)的幾何意義,考查用導數(shù)求函數(shù)的的最值.解題關(guān)鍵是求出導函數(shù),由的正負確定單調(diào)性,得函數(shù)的極值,從而可得最值19、(1);(2)【解析】(1)由等差數(shù)列以及等比中項的公式代入聯(lián)立求解出,再利用等差數(shù)列的通項公式即可求得答案;(2)利用分組求和法,根據(jù)求和公式分別求出等差數(shù)列與等比數(shù)列的前項和再相加即可.【詳解】(1)由題意,,,即,聯(lián)立解得,所以數(shù)列的通項公式為;(2)由(1)得,,所以【點睛】關(guān)于數(shù)列前項和的求和方法:分組求和法:兩個數(shù)列等差或者等比數(shù)列相加時利用分組求和法計算;裂項相加法:數(shù)列的通項公式為分式時可考慮裂項相消法求和;錯位相減法:等差乘以等比數(shù)列的情況利用錯位相減法求和.20、(1)A(1,7),(2)【解析】(1)與的的交點為點D,與的的交點為點A,聯(lián)立解方程即可得出結(jié)果.(2)設圓P的圓心P為,由,,計算求解即可得出點坐標,由求得半徑,進而可得出圓的方程.【小問1詳解】由題可得:與的的交點為點D,故由,解得:,故與的的交點為點A,,解得:,故A(1,7)【小問2詳解】設圓P的圓心P為,由與圓相切于點A,且的斜率為,則即,即,①又圓P為的外接圓,則BC為圓P的弦,又邊BC所在直線的科率為,故根據(jù)垂徑定理,有進而,即②,聯(lián)立①②,解得:,即故,則圓P的方程為:.21、(1)(2)90(3)平均值69.5;中位數(shù)69.4【解析】(1)由各矩形面積和為1列式即可;(2)由高分頻率乘以600即可;(3)由平均數(shù)與中位數(shù)的估算方法列式即可.【小問1詳解】由題意可知:解得小問2詳解】高分的頻率約為:故高分人數(shù)為:【小問3詳解】平均值為,設中位數(shù)為x,則故中位數(shù)為69.422、(1)(2)線段上存在一點,當時,平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- A證(企業(yè)負責人)-安全員A證(企業(yè)負責人考前練習)
- 廣東省中山市2024年九年級中考三模數(shù)學試卷附答案
- 電力系統(tǒng)節(jié)能減排實施方案
- 高一化學二第三章第一節(jié)最簡單的有機化合物-甲烷教學設計
- 2024高中地理第3章地理信息技術(shù)應用第3節(jié)全球定位系統(tǒng)及其應用學案湘教版必修3
- 2024高中語文第一單元以意逆志知人論世蜀相訓練含解析新人教版選修中國古代詩歌散文欣賞
- 2024高中語文第四單元創(chuàng)造形象詩文有別第21課自主賞析項羽之死課時作業(yè)含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考化學一輪復習專練5化學與STSE含解析新人教版
- 2024高考化學一輪復習第一部分考點41烴的含氧衍生物強化訓練含解析
- 2024高考化學一輪復習課練3物質(zhì)的組成性質(zhì)分類和化學用語含解析
- 嘔血護理查房
- 2024年新青島版(六三制)三年級下冊科學全冊知識點
- 朝韓關(guān)系相關(guān)分析
- 校園熱水方案
- 跟蹤服務項目活動實施方案
- 新能源汽車產(chǎn)業(yè)鏈中的區(qū)域發(fā)展不均衡分析與對策
- 財務機器人技術(shù)在會計工作中的應用
- 建筑保溫隔熱構(gòu)造
- 智慧財務綜合實訓
- 安徽省合肥市2021-2022學年七年級上學期期末數(shù)學試題(含答案)3
- 教育專家報告合集:年度得到:沈祖蕓全球教育報告(2023-2024)
評論
0/150
提交評論