版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京市江寧區(qū)高級中學2025屆高二上數(shù)學期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標準方程為()A.=1 B.=1C.=1 D.=12.已知直線與直線垂直,則實數(shù)()A.10 B.C.5 D.3.已知直線經過點,且是的方向向量,則點到的距離為()A. B.C. D.4.已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數(shù)n的值是()A. B.C. D.5.已知直線與拋物線C:相交于A,B兩點,O為坐標原點,,的斜率分別為,,則()A. B.C. D.6.命題“若,則”的否命題是()A.若,則 B.若,則C.若,則 D.若,則7.雙曲線的兩個焦點為,,雙曲線上一點到的距離為8,則點到的距離為()A.2或12 B.2或18C.18 D.28.已知,且,則實數(shù)的值為()A. B.3C.4 D.69.已知直線是圓的對稱軸,過點A作圓C的一條切線,切點為B,則|AB|=()A.1 B.2C.4 D.810.已知,,,則下列判斷正確的是()A. B.C. D.11.設函數(shù),,,則()A. B.C. D.12.黃金矩形是寬()與長()的比值為黃金分割比的矩形,如圖所示,把黃金矩形分割成一個正方形和一個黃金矩形,再把矩形分割出正方形.在矩形內任取一點,則該點取自正方形內的概率是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若命題“,不等式恒成立”為真命題,則實數(shù)a的取值范圍是________.14.曲線在處的切線斜率為___________.15.設數(shù)列滿足,則an=________16.已知內角A,B,C的對邊為a,b,c,已知,且,則c的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,且.(1)求;(2)若,的面積為,求.18.(12分)如圖,在直角梯形中,.直角梯形通過直角梯形以直線為軸旋轉得到,且使得平面平面.M為線段的中點,P為線段上的動點(1)求證:;(2)當點P滿足時,求證:直線平面;(3)是否存在點P,使直線與平面所成角的正弦值為?若存在,試確定P點的位置;若不存在,請說明理由19.(12分)已知點A(-2,0),B(2,0),動點M滿足直線AM與BM的斜率之積為,記M的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線;(2)若直線和曲線C相交于E,F(xiàn)兩點,求.20.(12分)若函數(shù)在區(qū)間上的最大值為9,最小值為1.(1)求a,b的值;(2)若方程在上有兩個不同的解,求實數(shù)k的取值范圍.21.(12分)已知公比的等比數(shù)列和等差數(shù)列滿足:,,其中,且是和的等比中項(1)求數(shù)列與的通項公式;(2)記數(shù)列的前項和為,若當時,等式恒成立,求實數(shù)的取值范圍22.(10分)如圖所示,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,A1C的中點,AD=AA1=2,AB=(1)求證:EF∥平面ADD1A1;(2)求平面EFD與平面DEC的夾角的余弦值;(3)在線段A1D1上是否存在點M,使得BM⊥平面EFD?若存在,求出的值;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)雙曲線的性質求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.2、B【解析】根據(jù)兩直線垂直,列出方程,即可求解.【詳解】由題意,直線與直線垂直,可得,解得.故選:B.3、B【解析】求出,根據(jù)點到直線的距離的向量公式進行求解.【詳解】因為,為的一個方向向量,所以點到直線的距離.故選:B4、C【解析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點為,,因為雙曲線的一條漸近線與直線平行,所以,解得.故選:C5、C【解析】設,,由消得:,又,由韋達定理代入計算即可得答案.【詳解】設,,由消得:,所以,故.故選:C【點睛】本題主要考查了直線與拋物線的位置關系,直線的斜率公式,考查了轉化與化歸的思想,考查了學生的運算求解能力.6、B【解析】根據(jù)原命題的否命題是條件結論都要否定【詳解】解:因為原命題的否命題是條件結論都要否定所以命題“若,則”的否命題是若,則;故選:B7、C【解析】利用雙曲線的定義求.【詳解】解:由雙曲線定義可知:解得或(舍)∴點到的距離為18,故選:C.8、B【解析】根據(jù)給定條件利用空間向量垂直的坐標表示計算作答.詳解】因,且,則有,解得,所以實數(shù)的值為3.故選:B9、C【解析】首先將圓心坐標代入直線方程求出參數(shù)a,求得點A的坐標,由切線與圓的位置關系構造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點A坐標為,,切點為B則,故選:C【點睛】本題考查直線與圓的位置關系,屬于基礎題.10、A【解析】根據(jù)對數(shù)函數(shù)的單調性,以及根式的運算,確定的大小關系,則問題得解.【詳解】因為,即;又,故.故選:A.11、A【解析】根據(jù)導數(shù)得出在的單調性,進而由單調性得出大小關系.【詳解】因為,所以在上單調遞增.因為,所以,而,所以.因為,且,所以.即.故選:A12、C【解析】設矩形的長,寬分別為,所以,把黃金矩形分割成一個正方形和一個黃金矩形,所以,設矩形的面積為,正方形的面積為,設在矩形內任取一點,則該點取自正方形內的概率是,則,故本題選C.【詳解】本題考查了幾何概型,考查了運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【詳解】解:因為,不等式恒成立,只要即可,因為,所以,則,當且僅當,即時取等號,所以,所以.故答案為:.14、##【解析】首先求得的導數(shù),由導數(shù)的幾何意義可得切線的斜率.【詳解】因為函數(shù)的導數(shù)為,所以可得在處的切線斜率,故答案為:15、【解析】先由題意得時,,再作差得,驗證時也滿足【詳解】①當時,;當時,②①②得,當也成立.即故答案為:16、【解析】先利用正弦定理邊化角式子,得到,再利用正弦定理求出,根據(jù)與的關系,求得,即可求得c的最小值.【詳解】,即,又,當最大時,即,最小,且為由正弦定理得:,當時,c的最小值為故答案為:【點睛】方法點睛:在解三角形題目中,若已知條件同時含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“邊化角”或“角化邊”,變換原則常用:(1)若式子含有的齊次式,優(yōu)先考慮正弦定理,“角化邊”;(2)若式子含有的齊次式,優(yōu)先考慮正弦定理,“邊化角”;(3)若式子含有的齊次式,優(yōu)先考慮余弦定理,“角化邊”;(4)代數(shù)變形或者三角恒等變換前置;(5)同時出現(xiàn)兩個自由角(或三個自由角)時,要用到.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由正弦定理得到,兩邊消去公因式得到,化一即可求得角A;(2)因為,所以,再結合余弦定理得到結果.【詳解】(1)由,得,因為,所以,整理得:,因,所以.(2)因為,所以,因為及,所以,即.【點睛】本題主要考查正弦定理及余弦定理的應用以及三角形面積公式,屬于難題.在解與三角形有關的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷一般來說,當條件中同時出現(xiàn)及、時,往往用余弦定理,而題設中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結合和、差、倍角的正余弦公式進行解答.18、(1)見解析(2)見解析(3)存在點P,【解析】(1)建立空間坐標系求兩直線的方向向量,根據(jù)數(shù)量積為0可證的結論;(2)求得直線的方向向量和面的法向量,證得兩向量垂直即可;(3)求直線的方向向量和面的法向量的夾角即可.【小問1詳解】由已知可得,,,兩兩垂直,以A為原點,,,所在直線為軸,軸,軸建立如圖空間直角坐標系,因為,所以,,,,,,,,,∴,,∴,,即,,∴平面又∵平面,∴【小問2詳解】設點坐標為,則,∵,∴,,,解得:,,,即設平面的一個法向量,∵,,∴,即,令,則,,得又,∴∴直線平面【小問3詳解】設,則,設的一個法向量為∵,,∴,解,令,則,,得設與平面所成角為,則.解得:或(舍).故存在點P,,即點P為距的第一個5等分點19、(1),曲線是一個雙曲線,除去左右頂點(2)【解析】(1)設,則的斜率分別為,,根據(jù)題意列出方程,化簡后即得C的方程,根據(jù)方程可以判定曲線類型,注意特殊點的去除;(2)聯(lián)立方程,利用韋達定理和弦長公式計算可得.【小問1詳解】解:設,則的斜率分別為,,由已知得,化簡得,即曲線C的方程為,曲線一個雙曲線,除去左右頂點.【小問2詳解】解:聯(lián)立消去整理得,設,,則,.20、(1)(2)【解析】(1)令,則,根據(jù)二次函數(shù)的性質即可求出;(2)令,方程化為,求出的變化情況即可求出.【小問1詳解】令,則,則題目等價于在的最大值為9,最小值為1,對稱軸,開口向上,則,解得;【小問2詳解】令,則,于是方程可變?yōu)椋?,因為函?shù)在單調遞減,在單調遞增,且,要使方程有兩個不同的解,則與有兩個不同的交點,所以.21、(1),;(2).【解析】(1)根據(jù)已知條件可得出關于方程,解出的值,可求得的值,即可得出數(shù)列與的通項公式;(2)求得,利用錯位相減法可求得,分析可知數(shù)列為單調遞增數(shù)列,對分奇數(shù)和偶數(shù)兩種情況討論,結合參變量分離法可得出實數(shù)的取值范圍.【詳解】(1)設等差數(shù)列的公差為,因為,,,且是和的等比中項,所以,整理可得,解得或.若,則,可得,不合乎題意;若,則,可得,合乎題意.所以,;;(2)因為,①,②②①得因為,即對恒成立,所以當且,,故數(shù)列為單調遞增數(shù)列,當為偶數(shù)時,,所以;當為奇數(shù)時,,所以,即.綜上可得22、(1)證明見解析;(2);(3)不存在;理由見解析【解析】(1)連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO,根據(jù)判定定理證明四邊形AEFO是平行四邊形,進而得到線面平行;(2)建立坐標系,求出兩個面的法向量,求得兩個法向量的夾角的余弦值,進而得到二面角的夾角的余弦值;(3)假設在線段A1D1上存在一點M,使得BM⊥平面EFD,設出點M的坐標,由第二問得到平面EFD的一個法向量,判斷出和該法向量不平行,故不存在滿足題意的點M.【詳解】(1)證明:連接AD1,A1D,交于點O,所以點O是A1D的中點,連接FO因為F是A1C的中點,所以OF∥CD,OF=CD因AE∥CD,AE=CD,所以OF∥AE,OF=AE所以四邊形AEFO是平行四邊形所以EF∥AO因為EF?平面ADD1A1,AO?平面ADD1A1,所以EF∥平面ADD1A1(2)以點A為坐標原點,直線AB,AD,AA1分別為x軸,y軸,z軸建立空間直角坐標系,因為點E,F(xiàn)分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版權許可使用及再許可合同標的解析
- 2025年度水泥磚廢舊資源回收與再利用合同3篇
- 云母粉阻燃改性技術-洞察分析
- 線上線下融合的保齡球服務-洞察分析
- 語言接觸中的方言演變-洞察分析
- 體育贊助對健美賽事作用-洞察分析
- 心理健康與營養(yǎng)關聯(lián)-洞察分析
- 藝術品數(shù)字化傳播策略-洞察分析
- 2023-2024年員工三級安全培訓考試題答案可打印
- 2024企業(yè)主要負責人安全培訓考試題加答案解析
- 2024年地理知識競賽試題200題及答案
- 肝衰竭診治指南(2024年版)解讀
- 河北省唐山市藥品零售藥店企業(yè)藥房名單目錄
- 監(jiān)考要求、操作流程及指導語
- 水上運輸大型構件安全交底
- 《保障農民工工資支付條例》口袋書課件
- 2020 新ACLS-PCSA課前自我測試-翻譯版玉二醫(yī)【復制】附有答案
- 危險化學品安全周知卡氧氣
- DB13∕T 5517-2022 大田作物病蟲草害防控關鍵期植保無人飛機作業(yè)技術規(guī)程
- 《編譯原理》考試試習題及答案(匯總)
- 贏在執(zhí)行力:團隊執(zhí)行力-下
評論
0/150
提交評論