版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
貴州省六盤山育才中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)曲線在點(diǎn)處的切線與x軸、y軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則的面積等于()A.1 B.2C.4 D.62.拋物線的準(zhǔn)線方程是()A. B.C. D.3.在直三棱柱中,側(cè)面是邊長為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.4.音樂與數(shù)學(xué)有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼模玫健拔ⅰ?,“微”?jīng)過一次“益”,頻率變?yōu)樵瓉淼?,得到“商”……依此?guī)律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個音階.據(jù)此可推得()A.“商”“羽”“角”的頻率成公比為的等比數(shù)列B.“宮”“微”“商”的頻率成公比為的等比數(shù)列C.“宮”“商”“角”的頻率成公比為的等比數(shù)列D.“角”“商”“宮”的頻率成公比為的等比數(shù)列5.設(shè)集合,集合,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在中,角A,B,C的對邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形7.閱讀程序框圖,該算法的功能是輸出A.數(shù)列的第4項(xiàng) B.數(shù)列的第5項(xiàng)C.數(shù)列的前4項(xiàng)的和 D.數(shù)列的前5項(xiàng)的和8.若,則()A.0 B.1C. D.29.在正三棱錐中,,且,M,N分別為BC,AD的中點(diǎn),則直線AM和CN夾角的余弦值為()A. B.C. D.10.若是雙曲線的左右焦點(diǎn),是坐標(biāo)原點(diǎn).過作的一條漸近線的垂線,垂足為,若,則該雙曲線的離心率為()A. B.C. D.11.已知為等差數(shù)列,且,,則()A. B.C. D.12.已知實(shí)數(shù),滿足不等式組,若,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機(jī)變量X服從正態(tài)分布,若,則______14.總體由編號為01,02,…,30的30個個體組成.選取方法是從下面隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為____________.66065747173407275017362523611665118918331119921970058102057864532345647615.已知曲線在點(diǎn)處的切線的斜率為,則______16.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一(如圖),給出下列三個結(jié)論:①曲線C恰好經(jīng)過6個整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過;③曲線C所圍成的“心形”區(qū)域的面積小于3;其中,所有正確結(jié)論的序號是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線和的交點(diǎn)為(1)若直線經(jīng)過點(diǎn)且與直線平行,求直線的方程;(2)若直線經(jīng)過點(diǎn)且與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程18.(12分)如圖,四棱錐中,是邊長為4的正三角形,為正方形,平面平面,、分別為、中點(diǎn).(1)證明:平面;(2)求直線EP與平面AEF所成角的正弦值.19.(12分)已知等比數(shù)列前3項(xiàng)和為(1)求的通項(xiàng)公式;(2)若對任意恒成立,求m的取值范圍20.(12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長為4,離心率等于(1)求橢圓的方程(2)設(shè),若橢圓E上存在兩個不同點(diǎn)P、Q滿足,證明:直線PQ過定點(diǎn),并求該定點(diǎn)的坐標(biāo).21.(12分)已知點(diǎn),圓,點(diǎn)Q在圓上運(yùn)動,的垂直平分線交于點(diǎn)P.(1)求動點(diǎn)P的軌跡的方程;(2)過點(diǎn)的動直線l交曲線C于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)T,使以AB為直徑的圓恒過這個點(diǎn)?若存在,求出點(diǎn)T的坐標(biāo),若不存在,請說明理由.22.(10分)如圖,在直三棱柱中,,,,點(diǎn)是的中點(diǎn).(1)求證:;(2)求證:平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在處的導(dǎo)數(shù)值,寫出切線方程,分別求得切線在兩坐標(biāo)軸上的坐標(biāo),再由三角形面積公式求解【詳解】由,得,,又切線過點(diǎn),曲線在點(diǎn)處的切線方程為,取,得,取,得的面積等于故選:C2、D【解析】將拋物線的方程化為標(biāo)準(zhǔn)方程,可得出該拋物線的準(zhǔn)線方程.【詳解】拋物線的標(biāo)準(zhǔn)方程為,則,可得,因此,該拋物線的準(zhǔn)線方程為.故選:D.3、C【解析】分析得出,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得異面直線與所成的角.【詳解】由題意可知,,因?yàn)椋?,則,,因?yàn)槠矫妫渣c(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則點(diǎn)、、、,,,,因此,異面直線與所成的角為.故選:C.4、C【解析】根據(jù)文化知識,分別求出相對應(yīng)的頻率,即可判斷出結(jié)果【詳解】設(shè)“宮”的頻率為a,由題意經(jīng)過一次“損”,可得“徵”的頻率為a,“徵”經(jīng)過一次“益”,可得“商”的頻率為a,“商”經(jīng)過一次“損”,可得“羽”頻率為a,最后“羽”經(jīng)過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數(shù)列,所以“宮、商、角”的頻率成等比數(shù)列,且公比為,故選:C【點(diǎn)睛】本題考查等比數(shù)列的定義,考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題5、A【解析】解不等式求集合,然后判斷兩個集合的關(guān)系【詳解】,解得,故,可化為或,解得或,故,故“”是“”的充分不必要條件故選:A6、B【解析】由余弦定理可得,再利用可得答案.【詳解】因?yàn)?,所以,由余弦定理,因?yàn)椋?,又,∴,故為直角三角?故選:B.7、B【解析】分析:模擬程序的運(yùn)行,依次寫出每次循環(huán),直到滿足條件,退出循環(huán),輸出A的值即可詳解:模擬程序的運(yùn)行,可得:
A=0,i=1執(zhí)行循環(huán)體,,
不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,不滿足條件,執(zhí)行循環(huán)體,滿足條件,退出循環(huán),輸出A的值為31.觀察規(guī)律可得該算法的功能是輸出數(shù)列{}的第5項(xiàng).所以B選項(xiàng)是正確的.點(diǎn)睛:模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的A,i的值,當(dāng)i=6時滿足條件,退出循環(huán),輸出A的值,觀察規(guī)律即可得解.8、D【解析】由復(fù)數(shù)的乘方運(yùn)算求,再求模即可.【詳解】由題設(shè),,故2.故選:D9、B【解析】由題意可得兩兩垂直,所以以為原點(diǎn),所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解【詳解】因?yàn)?,所以兩兩垂直,所以以為原點(diǎn),所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因?yàn)?,所?因?yàn)镸,N分別為BC,AD的中點(diǎn),所以,所以,設(shè)直線AM和CN所成的角為,則,所以直線AM和CN夾角的余弦值為,故選:B10、D【解析】根據(jù)已知條件,找出,的齊次關(guān)系式即可得到雙曲線的離心率.【詳解】由題意得,,,在中,,因,故,在,由余弦定理得,即,計(jì)算得,故.故選:D.【點(diǎn)睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)11、B【解析】由已知條件求出等差數(shù)列的公差,從而可求出【詳解】設(shè)等差數(shù)列的公差為,由,,得,解得,所以,故選:B12、B【解析】作出不等式組對應(yīng)的平面區(qū)域,然后根據(jù)線性規(guī)劃的幾何意義求得答案.【詳解】作出不等式組所對應(yīng)的可行域如圖三角形陰影部分,平行移動直線直線,可以看到當(dāng)移動過點(diǎn)A時,在y軸上的截距最小,聯(lián)立,解得,當(dāng)且僅當(dāng)動直線即過點(diǎn)時,取得最小值為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##25【解析】根據(jù)正態(tài)分布曲線的對稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.14、23【解析】根據(jù)隨機(jī)表,由編號規(guī)則及讀表位置列舉出前5個符合要求的編號,即可得答案.【詳解】由題設(shè),依次得到的數(shù)字為57,47,17,34,07,27,50,17,36,25,23,……根據(jù)編號規(guī)則符合要求的依次為17,07,27,25,23,……所以第5個個體編號為23.故答案為:23.15、【解析】對求導(dǎo),根據(jù)題設(shè)有且,即可得目標(biāo)式的值.【詳解】由題設(shè),且定義域?yàn)椋瑒t,所以,整理得,又,所以,兩邊取對數(shù)有,得:,即.故答案為:.16、①②【解析】先根據(jù)圖像的對稱性找出整點(diǎn),再判斷是否還有其他的整點(diǎn)在曲線上;找出曲線上離原點(diǎn)距離最大的點(diǎn)的區(qū)域,再由基本不等式得到最大值不超過;在心形區(qū)域內(nèi)找到一個內(nèi)接多邊形,該多邊形的面積等于3,從而判斷出“心形”區(qū)域的面積大于3.【詳解】①:由于曲線,當(dāng)時,;當(dāng)時,;當(dāng)時,;由于圖形的對稱性可知,沒有其他的整點(diǎn)在曲線上,故曲線恰好經(jīng)過6個整點(diǎn):,,,,,,所以①正確;②:由圖知,到原點(diǎn)距離的最大值是在時,由基本不等式,當(dāng)時,,所以即,所以②正確;③:由①知長方形CDFE的面積為2,三角形BCE的面積為1,所以曲線C所圍成的“心形”區(qū)域的面積大于3,故③錯誤;故答案為:①②.【點(diǎn)睛】找準(zhǔn)圖形的關(guān)鍵信息,比如對稱性,整點(diǎn),內(nèi)接多邊形是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)由已知可得交點(diǎn)坐標(biāo),再根據(jù)直線間的位置關(guān)系可得直線方程;(2)設(shè)直線方程,根據(jù)直線與兩坐標(biāo)軸圍成的三角形的面積,列出方程組,解方程.【小問1詳解】解:聯(lián)立的方程,解得,即設(shè)直線的方程為:,將帶入可得所以的方程為:;【小問2詳解】解:法①:易知直線在兩坐標(biāo)軸上的截距均不為,設(shè)直線方程為:,則直線與兩坐標(biāo)軸交點(diǎn)為,由題意得,解得:或所以直線的方程為:或,即:或.法②:設(shè)直線的斜率為,則的方程為,當(dāng)時,當(dāng)時,所以,解得:或所以m的方程為或即:或.18、(1)見解析(2)【解析】(1)連接,證明,即可證明平面;(2)取的中點(diǎn),連接,由平面平面,得平面,建立如圖所示空間直角坐標(biāo)系,利用向量法即可求得答案.【小問1詳解】證明:連接,是正方形,是的中點(diǎn),是的中點(diǎn),是的中點(diǎn),,平面,平面,平面;【小問2詳解】取的中點(diǎn),連接,則,因?yàn)槭沁呴L為4的正三角形,所以,因?yàn)槠矫嫫矫?,且平面平面,所以平面,建立如圖所示空間直角坐標(biāo)系,則,則,設(shè)平面的法向量,則有,可取,則,所以直線EP與平面AEF所成角的正弦值為.19、(1)(2)【解析】(1)由等比數(shù)列的基本量,列式,即可求得首項(xiàng)和公比,再求通項(xiàng)公式;(2)由題意轉(zhuǎn)化為求數(shù)列的前項(xiàng)和的最大值,即可求參數(shù)的取值范圍.【小問1詳解】設(shè)等比數(shù)列的公比為,則,①,即,得,即,代入①得,解得:,所以;【小問2詳解】由(1)可知,數(shù)列是首項(xiàng)為2,公比為的等比數(shù)列,,若對任意恒成立,即,數(shù)列,,單調(diào)遞增,的最大值無限趨近于4,所以20、(1);(2)證明見解析,.【解析】(1)由題可得,即求;(2)設(shè)直線PQ的方程為,聯(lián)立橢圓方程,利用韋達(dá)定理法可得,即得.【小問1詳解】由題可設(shè)橢圓的方程為,則,∴,∴橢圓的方程為;【小問2詳解】當(dāng)直線PQ的斜率存在時,可設(shè)直線PQ的方程為,設(shè),由,得,∴,∵,,∴,∴,∴,∴,又∴,∴直線PQ的方程為過定點(diǎn);當(dāng)直線PQ的斜率不存在時,不合題意.故直線PQ過定點(diǎn),該定點(diǎn)的坐標(biāo)為.21、(1);(2)存在,T(0,1)﹒【解析】(1)根據(jù)橢圓的定義,結(jié)合即可求P的軌跡方程;(2)假設(shè)存在T(0,t),設(shè)AB方程為,聯(lián)立直線方程和橢圓方程,代入=0即可求出定點(diǎn)T.【小問1詳解】由題可知,,則,由橢圓定義知P的軌跡是以F1、為焦點(diǎn),且長軸長為的橢圓,∴,∴,∴P的軌跡方程為C:;【小問2詳解】假設(shè)存在T(0,t)滿足題意,易得AB的斜率一定存在,否則不會存在T滿足題意,設(shè)直線AB的方程為,聯(lián)立,化為,易知恒成立,∴(*)由題可知,將(*)代入可得:即∴,解,∴在y軸上存在定點(diǎn)T(0,1),使以AB為直徑的圓恒過這個點(diǎn)T.22、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家庭支持系統(tǒng)與殘疾人心理健康的關(guān)聯(lián)性分析
- 有機(jī)化合物的分類方法(分層作業(yè))(原卷版)-2024-2025學(xué)年高二化學(xué)同步備課系列
- 小學(xué)信息技術(shù)與語文教學(xué)的跨學(xué)科融合探討
- 化學(xué)品的合理使用第1課時-講與練高一化學(xué)必修二
- 2025年度低溫冷鏈倉儲冷庫建設(shè)與設(shè)備銷售安裝服務(wù)合同3篇
- 河北環(huán)境工程學(xué)院《企業(yè)價值評估》2023-2024學(xué)年第一學(xué)期期末試卷
- 河北化工醫(yī)藥職業(yè)技術(shù)學(xué)院《房地產(chǎn)開發(fā)經(jīng)營與管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 家庭教育與孩子心理健康教育的結(jié)合
- 2025年度蘿卜供應(yīng)鏈融資合同:資金支持與信貸條款3篇
- 二零二五年度教育資源共享合作協(xié)議2篇
- 瑤醫(yī)目診圖-望面診病現(xiàn)用圖解-目診
- 2022年四級反射療法師考試題庫(含答案)
- 新《安全生產(chǎn)法》培訓(xùn)測試題
- 政務(wù)禮儀-PPT課件
- 特種涂料類型——耐核輻射涂料的研究
- 化工裝置常用英語詞匯對照
- 物資采購管理流程圖
- 無牙頜解剖標(biāo)志
- 標(biāo)準(zhǔn)《大跨徑混凝土橋梁的試驗(yàn)方法》
- 格拉斯哥昏迷評分(GCS)--表格-改良自用
- ISO9001記錄保存年限一覽表
評論
0/150
提交評論